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A B S T R A C T   

Ship roll motion in high sea states has large amplitudes and nonlinear dynamics, and its prediction is significant 
for operability, safety, and survivability. This paper presents a novel data-driven methodology to provide a multi- 
step prediction of ship roll motions in high sea states. A hybrid neural network is proposed that combines long 
short-term memory (LSTM) and convolutional neural network (CNN) in parallel. The motivation is to extract the 
nonlinear dynamic characteristics and the hydrodynamic memory information through the advantage of CNN 
and LSTM, respectively. For the feature selection, the time histories of motion states and wave heights are 
selected to involve sufficient information. Taken a scaled KCS as the study object, the ship motions in sea state 7 
irregular long-crested waves are simulated and used for the validation. The results show that at least one period 
of roll motion can be accurately predicted. Compared with the single LSTM and CNN methods, the proposed 
method has better performance in predicting the amplitude of roll angles. Besides, the comparison results also 
demonstrate that selecting motion states and wave heights as feature space improves the prediction accuracy, 
verifying the effectiveness of the proposed method.   

1. Introduction 

When a ship encounters high sea states, severe motion can be 
induced by wave-dominated environmental disturbances, significantly 
affecting operability, safety, and survivability. The prediction of roll 
motions is critical to motion compensation, which may prevent cargo 
crashes during the transfer and improve the aircraft landing safety on 
carriers and the firing accuracy of shipboard weapons systems (Huang 
et al., 2018). This prediction information is also helpful to captains or 
autopilot to make proper decisions. However, due to the complex 
interaction of the ship hull with the incoming waves, the accurate pre
diction of roll motions in high sea states is still a challenge. 

Prediction approaches for ship roll motion can be broadly classified 
into mechanism method and data-driven method. Mechanism modeling 
typically establishes a mathematical model consisting of the damping 
moment, the restoring moment, the added moment of inertia, and the 

wave disturbance moment. To obtain the model parameters, model test 
methods (Diez et al., 2018), empirical methods (Inoue et al., 1981; 
Newman, 2018; Yasukawa and Yoshimura, 2015), numerical methods 
(Gokce and Kinaci, 2018), and system identification methods (Hou and 
Zou, 2016; Jiang et al., 2021; Sun et al., 2021) have been investigated. 
Nevertheless, the ship roll motion in high sea states has large amplitudes 
and belongs to typical nonlinear motion. In this case, wave disturbance 
moments are highly coupled with other moments, making the assump
tion of the conventional mechanism models invalid. Moreover, the fixed 
hydrodynamic coefficients are difficult to adapt to the complex and 
changeable ocean environment. Therefore, the conventional hydrody
namic component model is unsuitable for the accurate prediction of roll 
motions in high sea states (Bassler, 2013). 

The data-driven modeling method extracts dynamic characteristics 
from the historical data. The classic time series forecast methods opti
mize the model structure from a prior model set, such as auto regressive 
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(AR) model and auto regressive moving average (ARMA) model (Jiang 
et al., 2020; Yumori, 1981). Despite high efficiency, they may not be 
effective for the rough sea states as the presence of stronger nonlinearity. 
As an alternative approach, machine learning methods have been 
further investigated to express the nonlinear features, which can map 
the input features to a high-dimensional space. Yin et al. (2013) com
bined radial basis function with sliding windows for ship roll motion 
predictions under moderate sea states. Huang et al. (2018) proposed a 
structural wavelet neural network for the accurate prediction of roll 
motion under regular waves. 

It is worth noting that the ship roll motion in waves has a significant 
memory effect (Chung and Bernitsas, 1997; Li, 2003), that is, the hy
drodynamic forces are not only related to the current states, but also to 
the historical states. For this issue, recurrent-type neural networks are 
suitable to be applied, which have good performance in time series 
prediction (Sutskever et al., 2014). Among them, long short-term 
memory (LSTM) neural networks have attracted much attention, 
which can overcome the gradient disappearance problem of recurrent 
neural networks (RNN), and improve the learning ability of long se
quences by adding gating units (Hochreiter and Schmidhuber, 1997). 
Tang et al. (2021) adopted LSTM to predict the time series of ship mo
tions, where the dataset under moderate sea states was simulated by 
wave energy spectrum and strip theory. Wei et al. (2021) employed 
LSTM for multi-step prediction of roll motions in moderate sea states, 
where the roll-motion sequence was decomposed by the adaptive 
empirical wavelet transform method. In general, previous studies have 
shown that LSTM performs well in predicting roll motions, but they 
mainly focus on low and moderate sea states. 

For the high sea states with large amplitude of ship motions, avail
able datasets are scarce due to the high cost and navigational safety 
risks. Computational fluid dynamics (CFD) based methods provide a 
way to get relatively realistic numerical results (Diez et al., 2018; Jiao 
et al., 2019; Serani et al., 2021; Wang et al., 2017). Based on the CFD 
data, several studies have investigated the forecast of roll motions in 
high sea states. Del Águila Ferrandis et al. (2021) performed a one-step 
prediction of ship motions under simulated oblique waves in sea state 8 
using RNN, Gate Recurrent Unit (GRU), and LSTM. Xu et al. (2021) used 

LSTM to predict roll and heave motions under simulated irregular beam 
waves of sea state 7. Both studies chose wave height as the input feature 
to obtain information directly from the environment. However, these 
studies tested only one-step predictions, while the motion prediction for 
a future period is required in practice. 

Until recently, few studies have focused on a multi-step prediction of 
the ship roll motion in high sea states. D’Agostino et al. (2021) inves
tigated the short-term prediction of ship motions in stern-quartering sea 
state 7 based on CFD simulations, focusing on comparing the capabilities 
of RNN, GRU and LSTM. However, the selection of feature variables can 
still be further explored and refined. Inspired by the latest studies, this 
study focuses on the multi-step prediction of ship roll motions in high 
sea states, comprehensively investigating the effects of the feature var
iables and designing the specific learning algorithm. 

This paper presents a novel data-driven method for the multi-step 
prediction of roll motions in high sea states. A neural network frame
work named ConvLSTMPNet is proposed to extract the nonlinear dy
namic characteristics and the hydrodynamic memory information from 
wave heights and roll motions, in which LSTM and CNN are called in 
parallel. Taking the KCS ship model as the research object, the CFD 
method is utilized to generate the data in sea state 7 irregular long- 
crested waves with different encounter angles. A comparative study 
on the feature space demonstrates that selecting motion states and wave 
heights can improve prediction accuracy. LSTM and CNN algorithms are 
further adopted as contrasts. The results indicate the proposed method 
has better performance in predicting the amplitude of roll angles. 

2. Problem description 

The purpose of this study is to predict the ship roll motion in high sea 
states over a period of time, which helps the captain or autopilot obtain 
trends and make proper decisions to enhance operability and safety. In 
general, the roll motion in high sea states has large amplitudes and 
nonlinear dynamics. In this condition, the damping moment, the 
restoring moment, the added moment of inertia and the wave distur
bance moment have more significant interaction effects than those at 
small roll angles, invalidating the assumption of the conventional 

Fig. 1. Overview of the forecasting modeling procedure.  
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mechanism models. Meanwhile, the interactions among the above- 
mentioned moments induce stronger nonlinearity. To construct hydro
dynamic memory effects of ship roll motion in high sea state, a time 
series problem is considered and a multi-step prediction model will be 
developed by a data-driven approach. 

Multi-step forecasting models predict a horizon of future values by 
all available inputs through a sequence-to-sequence architecture. It can 
be viewed as a modification of the one-step-head forecasting problem. In 
this study, the multi-step forecasting model of ship roll motion takes the 
form: 
(
yt+1, yt+2,…, yt+p

)
= f (yt− d+1, yt− d+2,…, yt,Xt) (1)  

where (yt+1, yt+2,…, yt+p) is a discrete forecast horizon of roll angle, 
(yt− d+1, yt− d+2,…, yt) are the observations of the roll angle over a look- 
back window d and Xt = (xt− d+1, xt− d+2,…, xt) are the exogenous in
puts over a look-back window d. The f( ⋅) is the nonlinear function to be 

learned. Thus, the forecasting modeling can be described as a supervised 
learning problem. The key issues are how to determine the feature 
variables and how to design the learning architecture to extract the in
formation of nonlinear dynamics and hydrodynamic memory effects, 
thereby achieving accurate multi-step predictions. 

3. Methodology 

3.1. Overview of the methodology 

The data-driven methodology mainly includes the design of the 
learning algorithm and the selection of feature variables. In addition, 
due to the specificity of the high sea state conditions, the data scarcity of 
the training set also needs to be considered. 

Fig. 2. Architecture of the ConvLSTMPNet.  

Fig. 3. Diagram of LSTM.  

Fig. 4. The extraction of spatiotemporal information through 1D convolution.  

D. Zhang et al.                                                                                                                                                                                                                                   



Ocean Engineering 276 (2023) 114230

4

In terms of learning algorithms, to better extract the nonlinear dy
namics and hydrodynamic memory effects of roll motions, a hybrid 
neural network is proposed that combines long short-term memory 
(LSTM) and convolutional neural network (CNN) in parallel, exploiting 

the CNN’s ability to extract the multi-variable coupling relationships 
and the LSTM’s ability to extract sequential correlation. As regards the 
feature variables, both roll motions and wave heights are investigated. 
To address the data scarcity of the training set, numerical computation 
through the CFD method is used to provide a high-fidelity dataset. 

The overall procedure of the methodology is displayed in Fig. 1. 
Firstly, to address the data scarcity, the CFD method generates the ship 
motion data in high sea states with different wave directions. Secondly, 
the sliding window method is adopted to obtain the dataset suitable for 
supervised learning. Then, the proposed ConvLSTMPNet combined by 
CNN and LSTM network in parallel is used to extract nonlinear dynamics 
and hydrodynamic memory effect information, and the multi-step roll 
prediction is interpreted by the fully connected layers. 

3.2. Multi-step forecasting model: ConvLSTMPNet 

To express the hydrodynamic memory effects, a multi-step fore
casting model for roll motion requires a sequence-to-sequence archi
tecture. Therefore, it is important to extract sequential correlation 
efficiently. In addition, the forecasting model for roll motions involves 
multiple variables as inputs, such as the time history of roll angles and 
wave heights. Thus, it is also important to fuse the information from 
feature variables. Considering that LSTM and CNN have advantages in 
the above problems respectively, a parallel net of one-dimension CNN 
(Conv1D) and LSTM is designed, named ConvLSTMPNet. 

A graphical illustration of the proposed model is shown in Fig. 2. The 
LSTM layer is used to learn the sequential correlation and the Conv1D 
layer is utilized to extract the local spatial-temporal information. They 
tackle the same inputs simultaneously. The outputs Ct and Lt of Conv1D 
and LSTM are connected end-to-end as inputs to the fully connected 
layer. Finally, the fully connected layer provides multi-step prediction 
results of the roll motions. The flow of information is presented in Eqs. 
(2)–(5): 

Ct = g1(Wc, [yt− d+1, yt− d+2,…, yt,Xt]) (2)  

hm = g2
(
Wh, [yn, xn, hm− 1]

)
(3)  

Lt = [h1, h2,…, hd] (4)  

Table 1 
Dimension of KCS.  

Dimensions Full 
Scale 

Model 
Scale 

Scale 1 31.599 
Length between the perpendiculars(m) 230 7.2786 
Beam at waterline(m) 32.2 1.0190 
Depth(m) 19 0.6013 
Draft(m) 10.8 0.3418 
Displacement (m3) 52030 1.6490 
Longitudinal center of gravity from the aft(m) 111.6 3.532 
Inertia moment of x axis/Beam at waterline 0.4 0.40 
Inertia moment of z axis/Length between the 

perpendiculars 
0.26 0.26 

Design speed (m/s, full scale: kn) 24 2.196 
Froude number 0.26 0.26  

Fig. 5. KCS hull model in STAR-CCM+.  

Table 2 
Classifications of wave level.  

Sea state Significant wave elevation 

1 <0.1 
2 0.1–0.5 
3 0.5–1.25 
4 1.25–2.5 
5 2.5–4.0 
6 4.0–6.0 
7 6.0–9.0 
8 9.0–14.0 
9 >14.0  

Fig. 6. Snapshots of the simulations.  
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Fig. 7. Three simulated datasets in sea state 7.  
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Yt =
(
yt+1, yt+2,…, yt+p

)
= g3(Wy, [Ct, Lt]) (5)  

where Wc,Wh and Wy represents the weights of Conv1D, LSTM, and the 
fully connected layers, g1( ⋅), g2( ⋅), and g3( ⋅) represents nonlinear func
tions, m = 1, 2, ..., d; n = t − d+ 1, ..., t − d+ 2, ..., t. The hidden state 
sequence [h1, h2,…, hd] is treated as the temporal information in LSTM 
layer. 

Specifically, LSTM is a variate RNN where the gate cell is introduced 
to solve the problem of gradient vanishing and gradient explosion in 
RNN (Hochreiter and Schmidhuber, 1997), as shown in Fig. 3. The 
forget gate ft decides what to forget from the previous memory cell ct− 1. 
The input gate it controls what to read out of the candidate memory cell 
c̃t derived by state pair [xt , ht− 1], and ht− 1 is the previous hidden state. 

The output gate ot determines the value to be transferred into the next 
training. Therefore, the attribute of transferring the previous hidden 
state into next cycle and above gates can help it better capture the 
long-term dependencies of roll time series. 

The corresponding formulas of LSTM are given in Eq. (6) to Eq. (11): 

ft = σ
(
Wf ,hht− 1 +Wf ,xxt + bf

)
(6)  

it = σ
(
Wi,hht− 1 +Wi,xxt + bi

)
(7)  

ot = σ
(
Wo,hht− 1 +Wo,xxt + bo

)
(8)  

c̃t = tanh
(
Wc,hht− 1 +Wc,xxt + bc

)
(9)  

ct = ft ⊙ ct− 1 + it ⊙ c̃t (10)  

ht = ot ⊙ tanh(ct) (11)  

where Wf ,h,Wf ,x,Wi,h,Wi,x,Wo,h,Wo,x, bf , bi, bo represent the weight 
matrixes and bias of forget gate, input gate and output gate, respectively. 
In addition, Wc,h and bc denote the weight matrix and bias of the can
diate cell state respectively; σ and ⊙ are logistic sigmoid function and 
elementwise multiplication, respectively. 

In ConvLSTMPNet, as shown in Fig. 2, the entire hidden state se
quences of LSTM are used as outputs to provide more temporal infor
mation for fully connected layer, which is specifically designed for 

Fig. 8. Wave energy spectra of CFD results versus nominal results.  

Table 3 
Wave energy spectrum moments of CFD and theorical results.  

Analysis CFD vs Theory N.wave Comp. per run Tot. run time/ Tp m0 m1 m2 

Value [m2] E% Value [m2]rad/s E% Value [m2] rad2/s2 E% 

Inputwave 240 37 0.003055 − 0.00061% 0.01149 0.0048% 0.049561 0.0715%  

Fig. 9. The responses of KCS under regular waves.  

Table 4 
The mean and variance of the experimental and CFD data (illustrated as mean/ 
variance).   

λ/L = 1.15 λ/L = 1.37 

Exp CFD Exp CFD 

heave − 0.1494/0.333 − 0.159/0.312 − 0.051/0.3523 − 0.104/0.369 
pitch − 0.001/0.2822 0.0147/0.3059 − 0.0088/0.495 0.0072/0.4081 
wave 0.1983/0.591 0.0584/0.503 0.0510/0.36 0.0192/0.476  
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multi-step prediction. 
A typical CNN contains convolutional layers, pooling layers, and 

fully connected layers. The convolutional layers can extract features 
from input sequences. The convolution kernel features the parameter 
sharing, thus reducing the number of weights to be trained and the 
complexity of the network. The pooling layers can distill the extracted 
features and pay attention to the most salient elements. The fully con
nected layers can interpret the internal representation to implement the 
task of regression or classification. Another important benefit of CNN is 
the support of multiple one-diemensional (1D) inputs as a separate 
channel to extract key information, i.e., the Conv1D layer. The one- 
dimension convolution operation is expressed in the following equation: 

c(t)= (x ∗ ω)(t)=
∑

a
x(t+ a)ω(a) (12)  

where x is the input features; t demotes the time; ω represents weights; a 
is the position of convolution kernel, and c is the feature map output 
after convolution operation ∗. 

The CNN part in the ConvLSTMPNet is shown in Fig. 4. The 1D 
sliding convolution kernels move vertically to extract key spatiotem
poral representation in the local time span from past time series of roll 
and wave elevation. Moreover, different convolution kernels can extract 
features from different perspectives to obtain higher-dimensional fea
tures. It is noted that no pooling layers are adopted due to the small data 
size compared to image data. 

Finally, the spatiotemporal and the time dependency information 
from CNN and LSTM will be flattened and concatenated into one vector, 
then the multi-step prediction of roll motion can be interpreted by the 
fully connected layers. 

3.3. Feature selection 

The selection of feature variables is critical to the accuracy of roll 
motion prediction, because proper feature variables can enhance the 
upper bound of the forecast model performance. Generally, two types of 
variables have been selected to predict roll motions: motion states (Tang 
et al., 2021; Wei et al., 2021; Li, 2003) and wave elevations (Del Águila 
Ferrandis et al., 2021; Xu et al., 2021). The relevant studies have 
demonstrated that both the roll motion states and wave elevation can 
provide some information for the prediction of roll motions. Compared 
with one-step ahead predicting, the multi-step prediction has higher 
requirements for extracting sufficient information to ensure long-term 
accuracy. 

Theoretically, if the data of motion states and wave heights involve 
different information, then the appropriate combination of these fea
tures can provide greater potential for forecasting modeling. However, 
few studies have investigated this problem. In this study, the time his
tory of roll angles and the wave heights around ships are selected as 
feature variables. In Section 5.4, a comparative exploration of the 
feature selection is provided. 

3.4. The generation of the numerical dataset 

Datasets play a key role in model training and evaluation. However, 
available datasets for high sea states are scarce due to the high cost and 
navigational safety risks. In this study, a numerical technique based on 
computational fluid dynamics (CFD) is applied to obtain relatively high- 
fidelity data on ship motion in high sea states. 

The datasets are generated by a Volume-of-Fluid (VOF) URANS 
solver in STAR-CCM+. Specifically, the VOF method is used to model the 
free surface. The superposed velocity and pressure fields of the indi
vidual regular waves are imposed as initial conditions to simulate 
irregular long-crested waves. Moreover, as the quality of the mesh is 
important for accurately simulating irregular waves, the adaptive mesh 
method is adopted to generate meshes of the free surface adaptively. The 
overset mesh method and Dynamic Fluid Body Interaction (DFBI) model 
is used to simulate ship motions, where pitch, heave and roll motions are 
collected. It should be noted that the long peak wave is a simplified 
treatment of irregular waves. Considering that the wave has a main 
direction in the actual sea, the application of long-crested waves can 
often obtain satisfied results in engineering. 

The waves are assumed as stationary, homogeneous, and ergodic 
random process. Then, the elevation of irregular waves is represented 
through superposed regular waves as Eq. (13): 

ζ(t) =
∑n

i=1
ai cos(ωit+ εi) (13)  

where the ζ denotes wave elevation, ωi is frequency of ith component 
wave, εi is random phases between − π and π ,and the component wave 
amplitude ai for a given frequency is obtained from the following 
equation: 

1
2
ai

2 ≅ S(ωi)Δωi (14)  

Fig. 10. Sliding window method.  

Fig. 11. Cross-validation on a rolling basis for time series prediction.  

Table 5 
Cross validation of optimal parameters on LSTM, CNN, ConvLSTMPNet.  

Candidate parameters Model 

ConvLSTMPNet LSTM CNN 

filters: [32,64,128] 32,64 None 64,64 
hidden_units: [32,64,100,128] 64 100 None  
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Fig. 12. Cross validation of parameters of CNN, LSTM, ConvLSTMNet.  

Table 6 
Average RMSE of 10 steps and 20 steps roll prediction.  

Timesteps 10 steps 20 steps 

Feature space Roll angle Wave elevation Roll angle & Wave elevation Roll angle Wave elevation Roll angle & Wave elevation 

Dataset #1 1.17956 1.53057 0.69255 1.55123 1.51943 0.92316 
Dataset #2 3.47372 3.58599 2.69369 5.15763 4.15442 3.43608 
Dataset #3 3.03476 4.95515 1.20959 4.45659 2.79653 1.46759  

Fig. 13. The RMSE of each step in multi-step prediction.  
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SPM(ω)=
5
16

(
Hs

2ωp
4)ω− 5 exp

(

−
5
4

(
ω
ωp

)− 4
)

(15)  

where SPM(ω) is Pierson-Moskowitz (PM) spectrum, Hs is significant 
wave elevation and ωp = (2π /Tp) represents the angular peak fre
quency. 

4. Data preparation and validation 

4.1. Data generation 

The KCS ship is taken as the study object. Considering the compu
tational cost, the scale KCS ship model is adopted. The dimensions of the 
full scale and model scale KCS are given in Table 1 and the geometry of 
KCS is shown in Fig. 5. The extreme sea condition is selected as sea state 
7. The Superposition of Wave method in the VOF module is adopted to 

generate irregular long-crested waves following the PM spectrum with 
240 linear regular component waves at equal frequency intervals. 
Referring to the World Regulation of the State Oceanic Administration 
(Table 2), the specific wave parameters for the scale model in sea state 7 
are set as follows: the significant wave height Hs = 0.2215 (corre
sponding 7 m in full scale) and the peak wave period Tp = 2.16s (cor
responding 12.13s in full scale). 

Numerical datasets are constructed for three conditions with 
encounter angles of 150◦, 120◦, and 90◦, called Dataset #1, Dataset #2, 
and Dataset #3, respectively. It is noted that the encounter angle of 90◦

corresponds to the port beam wave, 0◦ to the following wave, and 180◦

to the head wave. The total number of grid points is around 14,700,000. 
The ship motions are calculated over 80s for each case. The time step is 
set to 0.005s to satisfy the Courant-Friedrichs-Lewy condition. The time 
series of roll angles and the wave heights around the hull at three points 
are collected for training. In the CFD numerical tank, three wave gauges 

Fig. 14. The comparison results with different feature variables under dataset #1, #2 and #3.  

Table 7 
Average RMSE of CNN, LSTM and ConvLSTMPNet.  

Dataset #1 #2 

Model CNN LSTM ConvLSTMPNet CNN LSTM ConvLSTMPNet 
Average RMSE 1.05856 0.92316 0.80294 3.4442 3.43608 3.22126  
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that monitor the free surface elevation are as shown in Fig. 6 (a). Gauge 
1 is 0.2 times of ship length away from the bow, and Gauge 2 and 3 are 
1.5 times of ship width from the hull to detect the encounter wave 
around the ship. The snapshot of the simulation is shown in Fig. 6 (b). 

The roll responses exhibit different characteristics with different 
encounter angles of waves (as shown in Fig. 7). Specifically, a) when the 
ship encounters 90◦ beam waves, the amplitude of roll angles is the 
largest, up to 30◦. b) when the ship encounters the oblique waves of 120◦

and 150◦, the roll angles stand in [− 20◦,15◦] and [− 10◦, 8◦], respec
tively. However, the nonlinear characteristics of roll motions under 
oblique waves are more significant than those under beam waves. 
Theoretically, when the ship encounters beam waves, the encounter 
frequency is equal to the wave frequency in this study case. In the 
conditions of 120◦ and 150◦ oblique waves, the encounter frequency is 
larger than the wave frequency, leading to a higher frequency response 
than that of beam waves. Therefore, the theoretical analyzes are 
consistent with the simulation results. 

4.2. Validation of numerical datasets 

The validation of the input irregular wave refers to the literature 
(Diez et al., 2018). The irregular wave generated by CFD is validated 

versus theoretical benchmark values from the spectrum. In Fig. 8, the 
CFD spectrum is compared to the nominal spectrum. In addition, the 
wave energy spectrum moments m0, m1, and m2 are applied as addi
tional variables to evaluate the accuracy of the CFD wave energy spec
trum, as Eqs. 16 and 17: 

mk =

∫∞

0

ωkS(ω)dω k = 0, 1, 2 (16)  

E=mk
(CFD) − mk

(t) (17)  

where the superscript “CFD” represents simulation value and t repre
sents theoretical values, and E indicates the error of the CFD wave en
ergy spectrum moments to theoretical values. 

The wave energy spectral moments for CFD and theoretical are 
presented in Table 3. The average error E is small with an average of 
0.026%. The results demonstrate that the CFD wave energy spectrum 
achieves good agreement with theoretical values, verifying the effec
tiveness of input irregular waves generated by the CFD method. 

To test the availability of numerical results for the interaction be
tween ships and waves, the simulated KCS motions in regular waves are 
compared with the experimental data from the 2015 Tokyo Workshop 

Fig. 15. The RMSE of each step in multi-steps prediction: (a) dataset #1; (b) dataset #2.  

Fig. 16. The prediction results with CNN, LSTM and ConvLSTMPNet for dataset #2.  
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(T2015 Workshop). Fig. 9 shows the comparison results for the wave 
length-ship length ratio λ/L = 1.15,1.37, the wave height-ship length 
ratio H/L = 1/60 and Froude number Fr = 0.26. The mean and variance 
of simulated and experimental results is listed in Table 4. The mean and 
variance of Exp and CFD differ little, indicating that the CFD results 
make a great agreement with experimental data. 

5. Study case: multi-step prediction of the roll motion in sea 
state 7 

5.1. Data processing 

For multi-step prediction of ship roll motions, the dataset is divided 
into a training set and a validation set with a ratio of 8:2. The data are 
normalized in the interval (0, 1) to improve the convergence of the 
model. Furthermore, the structure of the training data for each time step 

is translated into a sliding window form, such as 
[
xt− d+1, yt− d+1,…, xt , yt ,

…, yt+p

]
,
[
xt− d+2, yt− d+2,…, xt+1, yt+1,…, yt+p+1

]
(as shown in Fig. 10). 

The green boxes represent the input sequence, and the pink boxes 
represent the output sequence that needs to be predicted. 

5.2. Model setting 

To optimize the hyperparameters of the proposed algorithm, cross- 
validation on a rolling basis is conducted. The specific mode is shown 
in Fig. 11. The original data for training is divided into k blocks. At the 
first turn, several blocks of data are used for training, and one block is 
used for testing. Then the current test block is concatenated as part of the 
training data for the next round. This process continues multiple times 
until the data is fully utilized. Finally, the average mean square error is 
used to evaluate the performance of the hyperparameter set. 

The ConvLSTMPNet architecture contains an LSTM layer and two 
Conv1D layers. The number of convolution filters and neural units of 
hidden layers in LSTM and CNN are investigated by cross-validation on a 
rolling basis. The hyperparameter candidates of the convolution filter 
are set to [32, 64, 128] with a fixed kernel size of 3, and the neural units 
of the hidden layer in the LSTM are set to [32,64,100,128]. The pa
rameters of three fully connected layers in ConvLSTMPNet are fixed as 
100, 50, and the same number of units as the steps desired to be pre
dicted. Based on the method of cross-validation on a rolling basis, the 
relatively optimal parameters of the above three models are obtained 
and listed in Table 5 and Fig. 12. Then these parameters are used to 
conduct the following case study in Sections 5.4 and 5.5. 

Specifically, the ConvLSTMPNet architecture contains one LSTM 
with 64 units in the hidden layer and two Conv1D layers with 32 and 64 
filters, with a kernel size of 3. The outputs of CNN and LSTM are 
concentrated together as the input for the three fully connected layers to 
generate the final prediction. In the three fully connected layers, the first 
and second layers have 100, 50 units, respectively, and the third layer 
has the same number of units as the steps desired to be predicted. 
Theoretically, the ConvLSTMPNet synthesizes the advantages of the two 
models. To evaluate its performance, LSTM and CNN are selected as the 
comparison model. The LSTM model has 100 units in its hidden layer, 
the same setup as the fully connected layers in the ConvLSTMPNet 
model. For the CNN model, two Conv1D layers with 64 filters and kernel 
sizes of 3, the flatten results are transferred into the fully connected 
layers which have the same setting as the ConvLSTMPNet model to 
predict the roll motions. The length of the lag time is set to be equal to 
the length of the time to be predicted. The batch size is set to 50 and the 
above model is optimized by Adam optimizer. 

5.3. Model evaluation 

For the evaluation of the model, it should be mentioned that the main 

objective to be achieved is prediction, rather than explanation. This is 
because the data-driven method has the advantage of mapping 
nonlinear features through supervised learning, but somehow lacks 
explainability. Therefore, the results are mainly analyzed and evaluated 
from the perspective of the prediction effects by the index of RMSE and 
the visualization of the prediction performance. Mean Square Error 
(MSE) is taken as the loss function for training, and Root Mean Square 
Error (RMSE) is taken to evaluate the performance of the predictive 
model. The formulas are given in Eq. (18) and Eq. (19), where n is the 
total number of samples, yi denotes the real value and ŷ denotes the 
predict value. 

MSE =

∑n
1(yi − ŷi)

2

n
(18)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

1(yi − ŷi)
2

n

√

(19)  

5.4. Study case I: evaluating the feature space for the multi-step prediction 
of roll motions 

The average RMSEs of 10- and 20-step predictions are listed in 
Table 6. Figs. 13 and 14 show the prediction results under different 
feature spaces. Fig. 13 presents the assessment of the predictive accuracy 
for each time step under different feature spaces, represented by RMSE. 
Fig. 14 shows the comparison results between the predicted and actual 
values for roll motion under different input features space, where the 
black line indicates actual value, and the dashed line denotes predicted 
values under different feature variables. The left column shows the 
prediction results for 10 steps, and the right column shows the predic
tion results for 20 steps. 

From Fig. 14, the roll and wave elevation can provide some valid 
information for predicting the roll motions, respectively. However, in 
the case of roll motion as the feature space, underestimation of large 
amplitude occurs due to the lack of external wave disturbance. Overall, 
it can be seen from Fig. 13 that when the roll motion states are used as 
the feature variable, the prediction error increases with the number of 
steps. Whereas, when wave heights are used as the feature variable, the 
error decreases with the increasing number of steps. This result indicates 
that the information contained in the roll motion state may be limited 
compared to the wave height, while the wave height requires more steps 
as input to reflect the effect of waves on roll motions. The results of 
Figs. 13 and 14, and Table 5 indicate that the feature space containing 
wave elevation and roll motion states can provide more sufficient in
formation than using only one of them. With the development of wave 
measurement techniques based on visual sensors (Bergamasco et al., 
2021; Cang et al., 2019) and wave radars (Lyzenga et al., 2015; Wang 
et al., 2007), real-time acquisition of wave heights has become possible. 
It is recommended to use both wave elevation and roll motion state as 
feature variables to enhance the prediction of roll motions in extreme 
sea conditions. 

5.5. Study case II: multi-steps roll motion prediction based on 
ConvLSTMPNet, CNN and LSTM 

The effects of the learning algorithm are investigated in this section 
under the premise of selecting both the time history of motion states and 
wave elevation information as the feature space. As seen in Study Case 1, 
the 20-step prediction in oblique waves (for datasets #1 and #2) still has 
room for improvement as the complicated coupling between the ship 
roll motion and the waves. To enhance the extraction efficiency of 
multidimensional information, the proposed ConvLSTMPNet is applied 
and evaluated by comparing it with LSTM and CNN described in Section 
5.2. 

The average RMSEs of the datasets #1 and #2 are listed in Table 7 
and the RMSE of each step in the multi-step prediction is shown in 
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Fig. 15. It can be found that ConvLSTMPNet has the best performance, 
with the lowest average RMSE of 0.80294 and 3.22126 under datasets 
#1, # 2, respectively. Additionally, for each step of the 20-step predic
tion, ConvLSTMPNet obtains the highest predictive accuracy. In 
contrast, the performance of LSTM is slightly worse than that of the 
proposed hybrid model, but better than that of CNN. 

In Fig. 16, four points are selected at intervals for dataset #2 and 
each of the 20-step predictions is conducted, which is 2s for the scaled 
model and 11s for the full scale. The results demonstrate that at least one 
period of roll motion can be accurately predicted by using the proposed 
method. Compared with the single LSTM and CNN methods, the pro
posed method has better performance in the prediction of the amplitude 
of roll angles. From the perspective of architectural composition, the 
ConvLSTMPNet architecture combines the advantages of LSTM and CNN 
in parallel to extract time memory effects and nonlinear coupling 
interaction between incident waves and ship motions, resulting in more 
accurate multi-step prediction results. In summary, the results demon
strate the effectiveness of the proposed method for the multi-step pre
diction of roll motion in high sea states. 

6. Conclusion and future work 

In this paper, a data-driven methodology is proposed for the multi- 
step prediction of ship roll motion in high sea states. A hybrid neural 
network ConvLSTMPNet which combines the LSTM and Conv1D in 
parallel is exploited to extract the nonlinear dynamic characteristics and 
the hydrodynamic memory information from wave and roll motion 
states, so as to obtain accurate multi-step predictions. The numerical 
solutions of KCS in sea state 7 irregular long-crested waves with different 
wave directions are generated as datasets by the CFD method. The 
comparative study of feature selection demonstrates the superiority of 
selecting both motion states and wave heights as the feature space. The 
proposed method can accurately predict at least one period of roll mo
tion in high sea states. The accurate prediction of roll motion can benefit 
the operation and safety of marine vessels and support the development 
of decision-making technologies for autonomous ships. 

CRediT authorship contribution statement 

Dan Zhang: Methodology, Supervision, Funding acquisition. Xi 
Zhou: Conceptualization, Methodology, Validation, Visualization, 
Writing – original draft. Zi-Hao Wang: Conceptualization, Methodol
ogy, Supervision, Formal analysis, Writing – review & editing. Yan 
Peng: Formal analysis, Funding acquisition. Shao-Rong Xie: Formal 
analysis, Funding acquisition. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

The data that has been used is confidential. 

Acknowledgment 

This work is financially supported by the National Natural Science 
Foundations of China [Grant number: 61973208, 52101361, 
61991415], the “Shuguang Program” 20SG40 supported by Shanghai 

Education Development Foundation and Shanghai Municipal Education 
Commission, and the program of shanghai academic research leader 
20XD1421700. 

References 

Bassler, C.C., 2013. Analysis and Modeling of Hydrodynamic Components for Ship Roll 
Motion in Heavy Weather (PhD Thesis). Virginia Polytechnic Institute and State 
University. 

Bergamasco, F., Benetazzo, A., Yoo, J., Torsello, A., Barbariol, F., Jeong, J.-Y., Shim, J.- 
S., Cavaleri, L., 2021. Toward real-time optical estimation of ocean waves’ space- 
time fields. Comput. Geosci. 147, 104666. 

Cang, Y., He, H., Qiao, Y., 2019. Measuring the wave height based on binocular cameras. 
Sensors 19, 1338. 

Chung, J.-S., Bernitsas, M.M., 1997. Hydrodynamic memory effect on stability, 
bifurcation, and chaos of two-point mooring systems. J. Ship Res. 41, 26–44. 
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