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• Significant wave height classification 
model is proposed based on 
Transformer. 

• The empirical mode decomposition fea-
tures can greatly enhance the model 
accuracy. 

• The patterns of the best window size for 
the current model change with lead 
time. 

• Parallel comparisons show the overall 
high-efficiency of the proposed model.  
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A B S T R A C T   

The prediction of significant wave height (SWH) is crucial for managing wave energy. While many machine 
learning studies have focused on accurately predicting SWH values within hours in advance, the primary concern 
should be given to the level of the wave height for real-world applications. In this paper, a classification 
framework for the time-series of SWH based on Transformer encoder (TF) and empirical mode decomposition 
(EMD) is developed, which can provide a lead time of 6 to 48 h with the fixed thresholds of 2 m for high level 
waves and 1.5 m for low level waves. The performance of this approach is compared to that of three mainstream 
algorithms with and without EMD features. Results from the datasets collected from buoy measurements in the 
Atlantic Ocean indicate that the optimal mean accuracy at a lead time of 6 h was 99.1% and the average training 
time was 75 s, demonstrating the accuracy and efficiency of this proposed model. This study provides valuable 
tools and references for real-world SWH prediction applications.   
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1. Introduction 

Ocean waves are one type of the significant sources of renewable 
energy, which can be converted into electricity through attenuators and 
other devices. They have the power flow intensities below the surface, 
which are in the range from 0.1 to 0.3 kW/m2 to 2–3 kW/m2 and one 
order of magnitude higher than wind energy on the surface. Addition-
ally, ocean wave energy is more reliable than wind energy [1]. Although 
wave-power technology is not yet fully developed, it has a great po-
tential for the future energy applications. 

Regarding the ocean waves, their significant wave heights (SWHs) 
are the vital characteristics of the ocean environment [2]. Therefore, 
grasping and then predicting the advanced knowledge of SWHs are 
essential for effectively managing wave energy. In particular, when 
using machines to make energy conversion, the ability should be 
established to halt machines in the event of insufficient wave energy 
source or beyond the machines’ capabilities [1]. To make efficient ocean 
energy conversion and utilization, theoretical modeling simulation is 
always needed. Traditional methods based on numerical simulations, 
such as the third-generation wave models (e.g., SWAN), require a high 
amount of computational power to solve Navier-Stokes equations using 
large oceanographic data sets. As a result, they are not suitable for 
short-term demands during the wave development processes, such as 
those with lead times of only a few hours [3]. 

Recently, statistical and machine learning approaches have provided 
potential solutions for the above challenge [4], and the core idea is to 
establish nonlinear patterns between consecutive time steps based on 
historical time series. So far, various time series models, including 
temporal convolutional network (TCN) [5], 1D convolutional neural 
network (CNN) [6] and the most prevalent models, have been developed 
based on recurrent neural networks (RNN) [7]. Generally, the models 
using convolutional networks display prominent superiority in time 
budget while models comprising RNN, such as long short-term memory 
network (LSTM) or gated recurrent unit (GRU), are more versatile, and 
present higher accuracy in various datasets [8]. Similar studies can also 
be referred in related fields, including wind speed forecasts [9], solar 
energy estimates [10], air-pollution monitoring [11] and Covid-19 
spreading predictions [12]. 

In general, the specific height of the SWH with 2.2 m or 2.4 m may 
not be crucial in decision-making for wave energy management. The key 
factor is the potential for high energy harvest from “high wave level”. 
Vice versa, the forecasts of 0.7 m or 0.9 m SWH values would generally 
result in the same strategies because both indicate that the sea state is 
“low”. Then, by incorporating machine learning as the methodology, the 
regression problem can be transformed into a classification problem, 
while still utilizing historical time series as the input. Such a task is more 
beneficial to providing more precise and long-period predictions, while 

regression models appeal to be inferior in those aspects because the 
efforts for forecasting the accurate values may not be necessary. How-
ever, at present, the related literatures are very limited. 

For the time series classification (TSC) of SWH, besides the accuracy, 
at least other two important issues are included: the first one is the 
maximum lead time of the model with acceptable precision, and these 
two items are generally contradictory, that is, the capacity of the model 
is to hold its accuracy as the lead time is increasing, and the other is the 
training time cost, which determines whether the model could be 
dynamically updated in real world. Meanwhile, for tasks related to SWH 
where the records of measurements are difficult to be uploaded, espe-
cially in high sea states, the low training cost is also conducive to the 
edge computing through IoT devices or local edge servers. 

Among prevalent models, including various CNN and RNN based 
models [5], the above two aspects of accuracy and time-cost cannot be 
balanced by purely adopting one of them. For instance, the CNN based 
models are hard to build long-term connections, and RNN based models 
need excessive budget to train. Hereby, the Transformer (TF) could be a 
promising alternative because of its attention mechanism and 
high-parallel capacity. 

Also, according to previous studies, the series decomposition 
methods may help to solve above concerns. In the work of Yang et al. 
[6], the seasonal and remainder components were generated through 
Loess method (STL) that has outperformance in shallow water region, 
especially when lead time is longer than 24 h. In this regard, one study 
also proved that the STL required extremely limited decomposing time 
within 0.08 s. In literature [13], the wavelet transformation method was 
adopted to improve the ResNet, thus reducing up to 18% of mean 
squared error, and saving the training cost at the same time. The most 
popular decomposition is a totally posteriori method: empirical mode 
decomposition (EMD) where several studies connected EMD with 
different learning methods to largely improve the predicting accuracy 
[8]. Despite the positive effects as our past work suggested (such as the 
posteriori [14] and the self-adaption [15]), their common routine that 
the first is to decompose modes, then separately predict each and finally 
sum up all (abbreviated as DPS in this paper) is too intricate for 
large-dataset and real-time update [16]. Most importantly, such a DPS 
routine is indirect for the current SWH classification task, which be-
hooves us to adopt a more suitable framework. 

Therefore, in this study, a novel TSC framework is proposed for SWH 
prediction based on the transformer encoder (TF) [17], and the powerful 
signal decomposition method such as the empirical mode decomposition 
(EMD) [18]. Few recent studies from Pokhrel et al. [19] and Putri and 
Adytia [20] have preliminarily exhibited the ability of pure TF model on 
SWH predictions for solving differential equations [19] or handling a 
long lead time that contradicted to short-term scenario [20]. In this 
work, inheriting from our previous paper [16], the sub-series from EMD 

Nomenclature 

Abbreviations and Symbols 
SWH Significant Wave Height 
SWAN Simulating Waves Nearshore 
TCN Temporal Convolutional Network 
CNN Convolutional Neural Network 
RNN Recurrent neural network 
LSTM Long Short-term Memory Network 
GRU Gated Recurrent Unit 
STL Seasonal Decomposition through Loess 
EMD Empirical Mode Decomposition 
TSC Time Series Classification 
CDIP Coastal Data Information Program 
DPS Decomposing-Predicting-Summing up routine 

CCE Categorical cross entropy 
CA Categorical accuracy 
loT Internet of things 
Hs Significant wave height 
Wh Window size 
Lh Lead time 
Ad High-level SWH threshold 
As Low-level SWH threshold 
hs Head size in multi-head attention 
hn Head number in multi-head attention 
tc Observation value under class c 
pc Prediction value under class c 
C Number of classification types 
Mtest Number of correct predictions in test set 
Ntest Total number of samples in test set  
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are directly used as the features to further enhance the TF model for 
within 6 to 48 h in advance. Such framework can provide a more concise 
and effective way for building models that are specifically suited for 
time-series classification tasks. The discussion of the performance is 
elaborated through parallel model comparison in terms of the accuracy, 
robustness as well as the time-efficiency. Detailed information can be 
found in Sections 3 and 4. 

The structure of this paper is as follows. In Section 2, the data source 
and data processing techniques are introduced; in Section 3, the 
methods of the current TSC framework are presented; in Section 4, the 
results are elaborated with multi-aspects discussion; and in Section 5, 
solid conclusions together with the future works are given. 

2. Dataset 

The source of SWH observations and the pre-processing techniques 
are presented in this section. In Section 2.1, the location and statistical 
exploration of the dataset are presented. In Section 2.2, the key pa-
rameters of the task and the approaches for train and test data genera-
tion are illustrated. 

2.1. Data source 

The raw historical records of SWH are obtained from the widely used 
Coastal Data Information Program (https://cdip.ucsd.edu/) [21], which 
began its inception since 1975 under the funding of U.S. Army Corps of 
Engineers. As shown in Fig. 1, the current offshore buoy is located at the 
Masonboro inlet of North Atlantic Ocean (34.14◦ N, 77.71◦ W) where 
the water depth is 15.700 m. 

As shown in Table 1, the dataset is a 4-year extraction with the time 
resolution of 30 min from year 2017 to 2020. It can be seen that the total 
number of timestamps is over 70,000, during which the global 
maximum SWH (Hs) is 5.100 m that reaches a sea state of level-6, and 
the minimum value is 0.260 m. Both mean and the medium values are 
around 0.900 m, with a moderate standard deviation of 0.414 m. 

Fortunately, the raw measurements are mostly completed, with only 
4 missing. To complete the dataset, linear interpolation is used, and the 
resulting curve is shown in Fig. 2. 

2.2. Data preprocessing 

The TSC model requires careful data preparation. Therefore, in this 
section, the important definitions for current problem and the way for 
data generation are introduced as follows. 

2.2.1. Key parameters 
To begin with, four critical parameters of the task are introduced in 

this part, including window size Wh, lead time Lh, high-level SWH 
threshold Ad and low-level SWH threshold As. The graphical illustration 
is plotted in Fig. 3. 

As shown in Fig. 3, the length of the solid green line is Wh, and all 
recorded points along the curve are known. The length of the dashed 
blue line is Lh, and the records are both unknown and unpredicted. The 
type (instead of the value) of the end point is as follows: if it is predicted 
to be larger or equal than Ad(horizontal dashed orange line), it is 
assumed to be “high-level” and will be painted with red (Fig. 3(a)); 
otherwise, if it is predicted to be lower than As(horizontal dashed black 
line), it is assumed to be “low-level” and will be painted with black 
(Fig. 3(b)). In the demo figure above, the Wh and Lh equal to 30 and 12 h, 
respectively, and their influences will be systematically investigated. 
The Ad = 2m and As = 1.5m are fixed in this study, which roughly 
represent the thresholds of medium/big wave and small wave according 
to Ref. [22]. 

2.2.2. Dataset generation 
Based on the interpolated raw measurements and the parameters 

above, the way of forming training and testing datasets is introduced in 
this part. The whole procedure is shown in Fig. 4 

The complete series is split by time sequence: the first 75% is the 
train part and the rest 25% is the test part. Then, the two parts are 
separately traversed according to 4 key parameters that generate four 
sets, namely high-level train, high-level test, low-level train, and low- 

Fig. 1. Buoy location for SWH measurements in Masonboro inlet near Wilmington [21].  

Table 1 
The statistical information of raw SWH buoy data from CDIP [21].  

Number of 
points 

Time 
step 
(min) 

Mean 
(m) 

Median 
(m/s) 

Max 
(m) 

Min 
(m) 

Standard 
Deviation 
(m) 

70,124 30 0.945 0.850 5.100 0.260 0.414  

Y. Chen et al.                                                                                                                                                                                                                                    

https://cdip.ucsd.edu/


Energy and AI 14 (2023) 100257

4

level test. The first two (high-level) are labeled as 1 and the other (low- 
level) is labeled as 0. Next, to ensure balanced training, the number of 
high-level and low-level instances in the sample are made equal by 
down-sampling the low-level sets. The resulting high-level and low-level 
sets are then combined and shuffled before being used for machine 
learning. 

3. Methodology 

This work utilizes a deep learning model with a feature generation 
component using EMD and TF encoders, followed by a dense layer and 
the classification output. The overall framework is illustrated in Fig. 5. 

The model structure is concise. The SWH series is first decomposed 
through EMD approach, thus resulting in several intrinsic mode func-
tions (IMFs). Subsequently, the SWH and those sub-series are concate-
nated and undergo the pre-processing procedure, as explained in 
Section 2.2.2. The obtained training sets are fed into two TF encoders in 
succession for learning nonlinear patterns between time steps and fea-
tures. The global average pooling is then used to reduce the tensor 
dimension into two for dense layer output. Eventually, two fully con-
nected dense layers (one hidden and one output) are added to provide 
the probability matrix of the level of the wave, and an additional 
dropout layer is inserted for stronger generalization. 

3.1. Empirical mode decomposition 

The EMD method was initially proposed by Huang et al. [18] in 
1998, and has been widely implemented throughout decades for its 

benefits in adaptively handling any nonlinear and nonstable signals 
[23]. The sub-components from EMD are called intrinsic mode functions 
(IMFs), with the following characters: (1) the difference between the 
number of local extrema and zero points should be zero or one; (2) the 
mean value of envelope curves of local maximum and local minimum 
should all be zero at any timestamp. As shown in Fig. 6, the total number 
of IMFs in this work is 15, and the last series is the residue term. The 
addition of them forms back to the original series. 

As shown in Fig. 6 and compared with the original data series in 
Fig. 2, the IMFs appear to be more regular, partially because the 
mentioned characters can force to eliminate the long-term tendency 
fluctuations in each component, so the IMF becomes more stable. Also, 
during the decomposition process, as the frequency is gradually 
decreased from high to low, the local subtle stochastic terms that highly 
influence the prediction accuracy [16] are successfully extracted from 
the original data, which would help to greatly improve the TSC per-
formance as well, which will later be shown in Section 4. 

3.2. TF encoder 

In this subsection, the structure and process of the deep learning 
model, TF encoder, are briefly discussed. The TF was first proposed by 
Vaswani et al. [17] to solve natural language processing (NLP) problem 
with the attention mechanism tactfully involved initially. Recently, 
there have also been wave height related applications using TF models 
[20]. Generally, it comprises embedding layers to expanding the rep-
resentations of word vectors, and both encoder and decoder parts were 
used for sequence-to-sequence mappings (such as the translation tasks). 

Fig. 2. The complete SWH dataset from CDIP (2017–2020) [21].  

Fig. 3. The illustration of 4 key parameters for SWH classification: the green solid lines are known information and the red/black color of the end point represents 
the type of the wave level. (a) High-level ending; and (b) low-level ending. 
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However, in our work, as a binary classification task, only the encoder 
part is used. 

As shown in Fig. 7, the left part is the structure of the self-attention 
module while the right part is the feed forward part. The multi-head 
attention layer calculates the attention score of inputs according to the 
following equation: 

Attention(Q, K, V) = softmax
(

QKT
̅̅̅̅̅
dk

√

)

V (1)  

where Q, K, V are the matrixes of queries, keys and values, the initial 
values of which are identical; and dk is the dimensional of the key ma-
trix. As shown in Formula (1), the multi-head attention layer creates 
several independent linear representations from the Q, K, V inputs. 
These representations are then normalized and combined with the in-
puts before being passed to the feed-forward module on the right. In this 
study, the 1-D CNN is utilized to improve the representation of feature 
correlations. 

3.3. Training settings 

The key hyper-parameters of the model are presented and explained 
in this sub-section. Moreover, the training techniques and server setting 
are elaborated. 

As shown in Table 2, both the head size hs and the number of heads 
hnare set to be 6 and 2. TF blocks in tandem are used to establish deeper 
connections between neurons. The first filter dimension for 1D-CNN is 
set to be multiplication of hs and hn, where the kernel size is quite small 
and set to be one window per kernel. 

The Adam [24] was adopted as the optimizer, with an initial learning 
of 1e− 3. The activation function except the output layer is set to be the 

Fig. 4. The flowchart of dataset preparation for machine learning models.  

Fig. 5. The flowchart of machine learning model for SWH prediction.  
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Fig. 6. All 15 intrinsic mode functions and the residue of the SWH series after EMD processing.  
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Fig. 6. (continued). 
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rectified linear unit (ReLU) for a fast training to prevent gradient van-
ishing during backpropagation. The 2-element softmax is used to end up 
the output layer with a probabilistic categorical result. Based on such an 
output, taking a single instance as an example, the loss function is 
defined as follows: 

CCE = −
∑C− 1

c=0
tclog(pc) (2)  

where CCE is the abbreviation for categorical cross entropy; C(= 2) is 
the number of classification types; tc and pc are the observation (integer) 
and probabilistic prediction under the classification type c, respectively. 

The analytical study is performed on Python 3.8 platform based on 
Keras packages [25]. The two cloud servers for all computation are both 
equipped with GPU RTX 3070 with 8 G video RAM. 

4. Results and discussion 

The numerical results and multi-aspect discussions are provided in 
this section through parallel comparisons. The competitors include the 
EMD and non-EMD models with the mainstream algorithms of TCN, 1D- 
CNN and LSTM. 

4.1. Performance criteria 

Besides the final average CCE (Formula (2)), the sparse categorical 
accuracy (CA) is used to evaluate the performance of the predictions 
from the proposed models. The expression can be drawn as Formula (3): 

CA =
Mtest

Ntest
(3)  

where Mtest represents the number of predicted labels (binary) that 
match the true labels in test set; and Ntest is the total size of the test set. 

4.2. Accuracy comparison 

The accuracy comparison is discussed in this part. The three parallel 
models are systematically tuned with key settings as follows: 

1. TCN: use two TCN layers with 64 and 32 filters; Dilations equals to 
[1,4,15,32]. 
2. 1D-CNN: use three 1D convolutional layers all with filters of 64 
and kernel size of 3, and use same padding technique around edges. 
3. LSTM: Use two LSTM layers with 32 units; the first LSTM layer 
returns the complete sequence while the second does not. 

4.2.1. Effects of lead time 
In this subsection, the accuracy comparisons are conducted under 

different lead times varying from 6 h to 48 h. To control the variables, a 
moderate window size of 30 h is used for each experiment and the fixed 
sampling scheme is adopted to ensure the training and testing datasets 
unchanged. 

The variation for 1-day ahead is shown in Fig. 8 and Table 3, where 
the accuracy of all EMD model gradually decrease with increasing lead 
time. The curves of TF and LSTM based model are comparable and 
nearly overlapped. For short lead time of 6 h, their accuracy on test set is 
impressively high, reaching 0.991 and 0.988, respectively. They still 
maintain a high performance around 0.900 when the lead time rises to 
complete one-day, which shows strong ability in learning far-end related 
features. However, the TCN and 1D-CNN models present a considerably 
drop as the lead time enlarges. Both have the initial accuracy over 0.950, 
but the precision ends up with values around 0.800 at 24 h in advance. 

Similarly, Fig. 9 and Table 4 display the plots of variations till two 
days ahead, showing a significant decrease with increasing inclination. 
The overall difference between EMD-TF and EMD-LSTM is still micro, 
and the ending accuracy on 48 h is around 0.720. As before, the TCN and 
1D-CNN perform worse, but the absolute difference of TCN accuracy 
between LSTM and TF becomes narrow while the precision of 1D-CNN is 
continuously exacerbated by the enlargement of lead time. 

The above analysis indicates that the TF based model can achieve an 
equivalence even with a subtle higher level of accuracy than LSTM for 
the task throughout 2-day lead time. The performance is highly prom-
ising for the first 24 h but was continuously fading afterwards. At the 
same time, the exactness of the proposed model can also distinctly 
surpass the 1D-CNN and TCN based models. 

4.2.2. Effects of EMD features 
In this subsection, the influences of EMD features are discussed. 

Here, the models with minimum (6 h) and maximum (48 h) lead time are 
selected for investigation to exaggerate their difference. 

As shown in Fig. 10 and Table 5, for 6 h ahead cases, the EMD fea-
tures play a pivotal role in decreasing the model loss. The cross-entropies 
of all models remarkably dive from the platforms with the similar level 
around 0.210. Among them, even the comparatively worst model 1D- 
CNN has approximately 50% improvement, the EMD impacts on TF 
model is the most impressive, reaching nearly 90% of cutdown from the 
original one. 

On the other side, As shown in Fig. 11 and Table 6, for 48 h ahead 
cases, the influence of EMD features is inconspicuous, and the differ-
ences between EMD and non-EMD models are within 25%. It should be 
noticed that the loss of non-EMD TF is even not the lowest among all 
models. However, when EMD features are included, an obvious 
improvement for TF is obtained compared with the counterparts. Such a 
phenomenon may attribute to that the multi-head attention layers can 
better extract effective information from IMF series for future evalua-
tion. Therefore, the EMD features are more appropriate workmates with 
TF than with others. 

Fig. 7. Structure of a single TF encoder used in current study.  

Table 2 
Key hyper-parameters for SWH classification model.  

Number of 
heads 

Head size Number of 
TF blocks 

Filter number 
of 1D-CNN 

Kernel size 
of 1D-CNN 

6 6 2 256 1 
Number of 

MLP units 
Multi-head 
dropout 

MLP dropout Number of 
MLP layer 

Batch size 

128 0.1 0.4 1 32 
General 

activation 
Last 
activation 

Initial 
learning rate 

Objective function 

ReLU softmax 0.001 Sparse categorical cross- 
entropy  
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4.2.3. Effects of window size 
Besides, the window size, such as multi-step length in some publi-

cations, may be influential too. Therefore, a systematical analysis of the 
loss under each lead time with various window sizes is conducted in this 
subsection. 

As shown in Fig. 12, to examine the ability of generalization, various 
sampling datasets were used under fixed lead time and fixed window 

size (solid lines), while the dots represent their mean loss. Then, the 
dashed lines indicate the tendency of the changes in cross-entropy for 
test sets as the window size is increasing. 

As it can be found from Fig. 12, when lead time is increased from 6 h 
to 24 h, the variation amplitude of the loss among different window sizes 
becomes larger. Also, the ranges of variation in different samplings are 
also increased as the lead time becomes longer. At the same time, the 

Fig. 8. Model accuracy changes w.r.t. different lead time from 6 to 24 h.  

Table 3 
Accuracy variations of EMD parallel models for lead time within 1day.   

6h 12h 18h 24h 

EMD-TF 0.991 0.939 0.924 0.900 
EMD-Conv1D 0.955 0.870 0.833 0.802 
EMD-TCN 0.982 0.905 0.885 0.816 
EMD-LSTM 0.988 0.946 0.916 0.881  

Fig. 9. Model accuracy changes w.r.t. different lead time from 30 to 48 h.  

Table 4 
Accuracy variations of EMD parallel models for lead time from 1to 2days.   

30h 36h 42h 48h 

EMD-TF 0.884 0.853 0.783 0.721 
EMD-Conv1D 0.789 0.768 0.725 0.673 
EMD-TCN 0.85905 0.810089 0.72997 0.624 
EMD-LSTM 0.863 0.847 0.790 0.712  
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best window size is gradually right shifted: 12 h for lead times of 6 h; 18 
h for lead time of 12 h; 24 h for lead time of both 18 and 24 h. This may 
be partly because that larger lead time requires more historical infor-
mation to build more long-term connections. However, for short lead 
time cases, the far-step information may be redundant and thus aggra-
vated the training burden and reduced the accuracy. 

However, the patterns are becoming different for further prolonging 
lead time, as shown in Fig. 13. For lead time of 30 h, the rules are 

inherited, and a larger amplitude of fluctuation can be observed among 
different window sizes. In addition, the best window size keeps on 
moving to 30 h as the yellow dots indicate. However, such a pattern 
stops when lead time equals to 36 h. From 36 h to 48 h, the three curves 
are generally monotonously climbing as the window size increases, and 
the best window size locates at the minimum step length of 6 h. A 
probable explanation for this phenomenon could be that most IMF fea-
tures focus on the local extreme features. When lead time becomes 

Fig. 10. Loss chart comparisons for different models with or without EMD features under a lead time of 6 h.  

Table 5 
Loss value comparisons for different models with or without EMD features under 
a lead time of 6 h.   

With EMD features Without EMD features Percentage 

TF based 0.0277 0.207 13.38% 
Conv1D based 0.1048 0.209 50.14% 
TCN based 0.0519 0.224 23.17% 
LSTM based 0.0382 0.224 17.05%  

Fig. 11. Loss chart comparisons for different models with or without EMD features under a lead time of 48 h.  

Table 6 
Loss value comparisons for different models with or without EMD features under 
a lead time of 48 h.   

With EMD features Without EMD features Loss percentage 

TF based 0.553 0.708 78.11% 
Conv1D based 0.585 0.694 84.3% 
TCN based 0.732 0.733 99.8% 
LSTM based 0.561 0.693 80.95%  

Y. Chen et al.                                                                                                                                                                                                                                    



Energy and AI 14 (2023) 100257

11

sufficiently long, the rules reflecting from those features, such as the 
patterns of local noise development, are meaningless. Therefore, as the 
window size becomes longer, the noneffective input can only make the 
model hard to train and more likely to be overfitting. 

4.3. Efficiency comparison 

Apart from the accuracy, the efficiency is also significant in evalu-
ating the model, especially for real dynamic applications. In this work, 
the representative 30(lead time)/30(window size) cases are used to 
evaluate the time cost of different EMD models. Due to the different 
sampling datasets, the averaged total computational time and the 
number of epochs to obtain the best model through early-stop technique 
are shown in Table 7. 

As it can be seen from Table 7, the total time cost of TF based model 
ranks second out of four models, which cost about double time than the 
first place EMD-Conv1D. The drawbacks EMD-LSTM are apparent. On 
the one hand, though all four models have acceptable number of 

Fig. 12. Test loss variation with different window sizes under the lead time changing from 6 h to 24 h.  

Fig. 13. Test loss variation with different window sizes under the lead time changing from 30 h to 48 h.  

Table 7 
Averaged total time cost and epoch number comparison between different EMD 
models.   

Averaged time cost Averaged epoch Time cost ratio 

EMD-TF 76.221 s 15 1.000 
EMD-TCN 84.820 s 7 1.113 
EMD-Conv1D 35.668 s 5 0.468 
EMD-LSTM 905.426 s 24 11.879  
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convergence steps, the EMD-LSTM still needs comparatively more 
epochs. On the other hand, noticeably, the total time cost of EMD-LSTM 
is considerably larger than any other models and over tenfold of EMD-TF 
for its essence of serial structure. Therefore, considering the accuracy 
discussed in Section 4.2, the EMD-TF appeals to be a promising and high- 
efficient model for the current task. 

In order to apply the current model in real-world applications, it is 
necessary to establish both an offline and an online system that work 
collaboratively. The online system will obtain historical measurements 
from sensors, use the model in-hand to make classifications, and 
continuously transmit new data to the offline system. Meanwhile, the 
offline system will periodically update the model based on pre-defined 
error thresholds and send the updated model back to the online sys-
tem for deployment. By setting up this coordinated system, the model 
can be optimized and refined over time, providing increasingly accurate 
and reliable predictions for a variety of SWH classification tasks. 

5. Conclusion 

In this study, a new framework, empirical mode decomposition with 
Transformer encoder (EMD-TF), is proposed to improve wave energy 
management by classifying the level of significant wave height in 
advance. The high-level and low-level thresholds of the significant wave 
height (SWH) are set to be 2.0 m and 1.5 m in this study. Through nu-
merical studies, the model presents the following impressive 
advantages: 

1 The current model can provide up to 9.80% and 9.97% higher ac-
curacy compared with temporal convolutional network and one- 
dimensional convolutional neural network based models within 
lead time of 24 h and 48 h. The accuracy of long short-term memory 
network combine with empirical mode decomposition (EMD-LSTM) 
is comparable with a subtle less than the current model.  

2 For a short lead time of 6 h, the features from empirical mode 
decomposition can largely reduce the testing loss for all parallel 
models but become the most effective on Transformer models, thus 
cutting down nearly 90% of the categorical cross entropy.  

3 For a long lead time up to 48 h, the influence of features from 
empirical mode decomposition is largely weaken but is still more 
obvious on Transformer.  

4 For current model, distinct patterns are shown regarding the effects 
of window size for different ranges of lead times. The best window 
size for lead time less than 30 h displaying a right-shift tendency 
while the minimal window size is the best for lead time over 30 h.  

5 Efficiency tests indicate that the time cost of EMD-LSTM is over 
tenfold than that of the EMD-TF model, suggesting that the current 
framework could be a more high-efficient alternative in SWH clas-
sification tasks. 

It is important to acknowledge that the current data source is 
restricted to the North Atlantic Ocean. However, we anticipate that the 
proposed method has the potential to be adapted to various datasets 
from different regions worldwide. This can be achieved by modifying 
the high-level and low-level SWH thresholds to match the local envi-
ronmental conditions. While the patterns of model performance with 
lead time may vary when applied to different regions, we believe that 
the fundamental tendency and effectiveness of the model will remain 
consistent. 

In the future, further research is needed to fully understand fre-
quency or pahse [26] characteristics and their neural network supports, 
such as weight distribution, in order to form more robust explanations or 
theories. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

The financial support from the National Natural Science Foundation 
of China (No. 61973208) is gratefully acknowledged. Also, the paper is 
sponsored by “Shuguang Program” (18SG36) that is supported by 
Shanghai Education Development Foundation and Shanghai Municipal 
Education Commission. 

References 

[1] Caloiero T, Aristodemo F, Ferraro DA. Annual and seasonal trend detection of 
significant wave height, energy period and wave power in the Mediterranean Sea. 
Ocean Eng 2022;243:110322. 
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