The mean wake model and its novel characteristic parameter of H-rotor VAWTs based on random forest method

摘要

Using the random forest (RF) algorithm, this study presented a key parameter to characterize the mean wake of H-rotor VAWTs while modelling the wake. First, the RF algorithm was used to establish the regression relationship between the average wake velocity distribution and the rotor features. Next, the feature crosses method was combined with the RF algorithm to analyze the interaction and importance of the inputs. It was found that the normalized importance of a synthetic feature in wake modelling occupied a considerable significance, reaching 0.884 out of 1. The RF wake model with this parameter as the only input feature could successfully reconstruct the wake. It was found that this feature may reflect the ability of incident wind passing through the operating rotor and played a decisive role in the wake velocity distribution, including initial velocity deficit and wake recovery rate. The universality of this parameter was proved through cases analysis of wind turbines under different sizes and operating conditions. The study of the wake field is important for the modelling of the H-rotor VAWT wake field, and hence affects the optimal configuration of the wind farm.

出版物
Energy
Yaoran Chen
Yaoran Chen
Researcher of Artificial Intelligence

我所研究的专业领域涉及计算流体动力学(Computational Fluid Dynamics)、人工智能(Artificial Intelligence)以及它们的交叉方向。目前,我的研究以海洋为应用背景,包含物理信息神经网络、海洋环境信息、海洋可再生能源等。