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A B S T R A C T   

Short-term wind speed forecast is of great importance to wind farm regulation and its early warning. Previous 
studies mainly focused on the prediction at a single location but few extended the task to 2-D wind plane. In this 
study, a novel deep learning model was proposed for a 2-D regional wind speed forecast, using the combination 
of the auto-encoder of convolutional neural network (CNN) and the long short-term memory unit (LSTM). The 
12-hidden-layer deep CNN was adopted to encode the high dimensional 2-D input into the embedding vector and 
inversely, to decode such latent representation after it was predicted by the LSTM module based on historical 
data. The model performance was compared with parallel models under different criteria, including MAE, RMSE 
and R2, all showing stable and considerable enhancements. For instance, the overall MAE value dropped to 0.35 
m/s for the current model, which is 32.7%, 28.8% and 18.9% away from the prediction results using the 
persistence, basic ANN and LSTM model. Moreover, comprehensive discussions were provided from both tem
poral and spatial views of analysis, revealing that the current model can not only offer an accurate wind speed 
forecast along timeline (R2 equals to 0.981), but also give a distinct estimation of the spatial wind speed dis
tribution in 2-D wind farm.   

1. Background and introduction 

Wind energy has undergone rapid development over the past two 
decades [1]. Meanwhile, the high fluctuation and occasional cessation of 
wind power have posed large uncertain factors to its grid integration 
[2]. To mitigate such instability and to enhance the power production, 
an accurate real-time forecast of the wind speed for the wind farm is of 
great importance [3]. 

The approaches for wind speed forecasts can mainly be categorized 
into two types: the physical model and the data-driven model [4]. The 
physical model is based on numerical weather forecasting (NWP) that 
uses various meteorological and geological information as input and 
then calculates the wind speed through physical laws (e.g. N-S equation) 
[5,6]. Nevertheless, such method is considerably expensive in its time 
cost, hence it is not suitable for short-term wind prediction problem [7]. 
On the contrary, data-driven models are more feasible for real-time 
forecasting because all of the required data is the recorded wind series 

in history [8,9]. Purely based on the past dataset, the wind speed fore
cast is conducted through different algorithms to establish their statis
tical correlations in this methodology [10]. 

So far, data-driven models for wind speed prediction have undergone 
three phases of development. In the first era, the traditional statistical 
models were used for stationary time series [11], where a typical family 
was the auto-regression (AR) models. Erdem et al. [12] adopted the 
autoregressive integrated moving average (ARIMA) models to predict 
the hourly mean wind attributes, and compared the prediction perfor
mance with different pre-processing techniques. Tong et al. [13] com
bined the wavelet transformation with AR model, and respectively 
forecasted the wind speed 1, 3 and 7 h in advance. Such AR models are 
easy-to-implement, but are weak when handling non-stable wind series 
since they can hardly establish the non-linear relations between vari
ables in a direct way [14]. 

Aiming at this problem, various machine learning (ML) models were 
proposed, forming the second wave in this field [15]. Khosravi et al. [16] 
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developed and compared 7 machine learning models based on different 
combinations of algorithms, including multi-layer perceptron (MLP), 
support vector machine (SVM), fuzzy network (FN) and heuristic 
searching methods. The feasibility of the models was tested on various 
wind speed series with intervals from 5 to 30 min. Liu [17] et al. adopted 
empirical mode decomposition (EMD) and extreme learning machine 
(ELM) to predict the non-stationary part of the raw wind series, and they 
synthesized the results with the stationary outcome forecasted by 
ARIMA, presenting a higher performance over any other sub-models 
[17]. Hence, these machine learning models can effectively build the 
non-linear mappings from inputs to outputs and can forecast the wind 
speed in a closer future when given a high-resolution dataset. Yet, the 
prediction accuracy of naive machine learning models would approach 
its upper limit when the scale of historical data is continuously 
increasing and its feature dimension is further expanding [18]. 

To overcome this setback, as the third phase, different deep learning 
(DL) models have been developed and widely used in recent years. Peng 
et al. [19] developed a DL neural network with wavelet soft threshold 
denoising (WSTD) and gated recurrent unit (GRU). The forecasts out
performed other benchmarks under evaluations of accuracy, compati
bility and computational cost. Malik et al. [20] proposed a novel deep 
reinforcement learning model for this task, with its mean squared error 
(MSE) decreased over 30% compared with the parallel ML models. Aly 
[21] investigated the combinations of various basic ML models into 
more sophisticated DL models and found out the best hybrid on target 
dataset. All of these investigations have shown the great potential of 
deep learning algorithms to solve the wind speed forecasting problem 
with high precision. 

However, whatever the algorithms were, the above works mainly 
focused on the wind speed estimated at a single location, and there were 
few previous researches that conducted the wind speed forecast for the 
whole region of a 2-D wind farm that integrates bunch of sites together. 
As an evident merit, such synchronized regional wind speed prediction 
is more beneficial for the overall power grid regulation and the resource 
management. In addition, during the process of such regional wind 
speed prediction, both spatial and temporal information of wind field 
and turbine sites could be fully used, and would further enhance the 
overall prediction performance. Therefore, it is a challenging and 
meaningful gap to be filled. 

In this study, a novel deep learning model was proposed to solve the 
regional wind speed forecasting problem. To begin with, as pre- 
processing, the orthogonalization was used to decompose the raw 
wind speed of each site in the target region [12], aiming to eliminate the 
influence of the anisotropy of wind directions among different points on 
the prediction result. Next, the deep learning algorithm comprising two 
models were adopted: first, from the view of space-correlation, the 
convolutional neural network (CNN) [22,23] was used as an auto- 
encoder to extract the low-dimension deep features from the 2D wind 
speeds matrix over the wind farm; second, from the temporal aspect of 
view, the long short-term memory network (LSTM) [24,25] was 
employed to forecast such deep feature based on the historical data, 
which would then be transferred back into the CNN decoder to make 
predictions of wind speed components. Eventually, these forecasted 
components were reversely summed up as the final wind speed [12]. 

The contribution of this work can be summarized as follows:  

1. Instead of conducting on a single-site wind speed prediction, a novel 
deep learning framework was proposed for the wind speed fore
casting for a 2-D regional wind farm.  

2. The spatial and temporal information of the wind farm was learnt by 
CNN and LSTM modules respectively, and these two algorithms are 
coupled together in the whole framework.  

3. Multi-aspect comparisons were conducted to examine the model 
performance, including benchmarks of parallel models and multi- 
criterion assessments, hence the reliability of model is improved.  

4. Abundant analytical discussions were elaborated in detail from the 
all-round comparisons on both time-series fitness and spatial wind 
speed distribution. 

The roadmap of this work is constructed as follows: in Section 2, we 
introduce the target regional wind farm dataset; in Section 3, the 
methodology is presented; In Section 4, we analyze the numerical re
sults; finally, in Section 5, solid conclusions are made. 

2. Dataset 

The target dataset was extracted from a three-year wind attributes in 
a 10 × 10 wind array located at Indiana, US, 2010–2012. Such wind 
resources were publicly available in the Wind Integration National 
Dataset (WIND) provided by NREL [26] and have been widely cited in 
previous researches under various background of usage [27–29]. 

As shown in Fig. 1, the target wind sites were arranged in an inclined 
square. The orientation of the square was mildly rotated from the East- 
South-West-North (ESWN) system (less than 10 degree). Here, we 
denoted the N-S direction as theX axis, the rows of sites are indexed by 1 
to 10 from the north-most to the south-most. In addition, columns of 
sites from the west-most to east-most were indexed by 1 to 10 in Y axis. 
Such convention is throughout this work. 

Besides, an overview of the statistical information of the array is 
provided in Table 1 and Fig. 2. As shown in Table 1, there are 13140 ×
100 points of recorded data throughout three years in total. Although 
the time resolution was rather high in raw dataset (5 min) [26], we 
diluted the time interval to be every 2 h in this work, which could be 
more sufficient and reasonable for the wind grid regulation. The dis
tance between each adjacent sites of the grid was 2 km. 

Fig. 2 also illustrates the distribution of mean value, standard devi
ation among sites and a full-time wind history of arbitrary site in the 
target region. As it can be referred, the average wind speed for sites 
ranges from 7.19 m/s to 7.50 m/s, with a minor difference between 
adjacent points. Meanwhile, there is a general trend of the wind speed 
change, where the maximum average is presented at the east-south 
corner (10, 10) while the low-speed zone appears in the opposite di
rection. Also, similar tendency can be observed in the deviation plot, 
presenting a potential spatial correlation to be considered. 

3. Methodology 

The overall flow chart of the proposed model is shown in Fig. 3, with 
the necessary matrix shape of the dataset denoted within brackets. In 
this problem, the first 80% of the whole wind history was chosen as the 
training series to be fed into the CNN-LSTM model, and the rest part was 
the testing set to assess and polish the model. The detailed illustration of 
data-processing and CNN-LSTM algorithm is presented in Sections 3.1 
and Section 3.2, respectively. 

3.1. Pre-processing 

As mentioned above, the aim of orthogonalization processing on raw 
wind dataset is to eliminate the inconsistency of the wind direction 
during the wind speed regression process [12]. Given the wind speed 

array Xt =
(

Xt
ij

)

m×n 
and the corresponding wind direction array Dt =

(
Dt

ij

)

m×n 
(m = n = 10), taking the positive directions of north and east, 

the components of ESWN decomposition is described as below: 
{

Xt
NS = Xt*cos(Dt)

Xt
EW = Xt*sin(Dt)

, (1) 

where each entry of Dt is a degree of wind direction, rotating anti- 
clockwise from the north. 

Inversely, for the post-processing, if we denote the forecasted NS and 
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EW components as X̂t+1
NS andX̂t+1

EW , the final prediction X̂t+1 will be the 
magnitude of their vector summation: 

X̂t+1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

X̂t+1
NS

)2
+
(

X̂t+1
EW

)2
√

(2)  

3.2. CNN-LSTM algorithm 

In this section, the CNN-LSTM algorithm is introduced in detail. The 
whole framework is illustrated in Fig. 4. As it can be found, in this 
system, two main modules, namely CNN and LSTM, were coupled 
together. The CNN worked as an extractor and translator for the deep 
feature. Such deep feature integrated the spatial information of the wind 
attributes among sites and had lower dimension compared with the raw 
matrix. In addition, the LSTM model acted as the temporal predictor to 
forecast such deep feature along the timeline under the given time step. 
In this work, out of the engineering consideration, the time step was 
chosen to be 6, meaning that the records of the past half-day were used 
to forecast the regional wind speed in 2 h later. 

It should also be noticed that in Fig. 4, the entire dataset was divided 
twice. As mentioned in Section 2, to train the LSTM predictor, the raw 
time series was separated at a ratio of 4:1. However, when training CNN 

Fig. 1. Location source of regional wind speed dataset [26].  

Table 1 
Statistical information of the regional wind dataset.  

Number of 
temporal 
points 

Time 
step 

Number of 
spatial 
points 

Spatial 
interval 

Max wind 
speed 
value 

Min wind 
speed 
value 

13,140 2 h 100 2 km 27.23 m/s 0.01 m/s  
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model, testing series were not used to prevent data leakage. Hence the 
training series were further divided into a CNN training set and CNN test 
set by another 4:1. 

3.2.1. Convolutional neural network (CNN) 
Inspired from the well-known VGG-net [30,31], the structure of CNN 

model is shown in Fig. 5. Small sized kernel filters with shape of 3 × 3 
were repeatedly used, followed by the pooling layer for deep feature 
extraction. Working as an auto-encoder, the input and output data of 
CNN model were identical, and the real production was the structure 
itself together with the extracted 1-D deep feature containing the spatial 
information. The mechanism of techniques including padding, con
volutional filtering and pooling are briefly introduced as follows. 

Fig. 6 explains how padding and convolutional filter works [32]. 
Given the input matrixx with shape D@A × A and convolutional filter Fk 

with shapeD@F× F, the outputyk is calculated as: 

yk = σ(Fk*x + bk), k = 1, 2⋯K (3) 

where “*” denotes the convolutional operator; bk is the bias for the kth 

filter; K is the total number of filters during this operation; σ is the non- 
linear activation function, using rectified linear unit (Relu) in this work. 

Pooling is a process of down-sampling, which can effectively reduce 
the dimension of the matrix window, while retaining the deep infor
mation at the same time [30]. In this work, the max pooling was used. As 
shown in Fig. 7, given the kernel size (e.g. 2 in figure), the maximum 
value of each slice of each block is extracted and combined to form the 
output. Also, the depth of matrix does not change during the process. 

3.2.2. Long Short-term memory network (LSTM) 
The LSTM neural network is a robust version of recurrent neural 

Fig. 2. Statistical overview of the regional wind speed dataset in wind farm of Indiana, USA, 2010–2012 [26]: (a). Mean speed value; (b) Standard deviation; (c) full- 
time wind history of a random selected site, Location: (3, 4). 

Fig. 3. Flow chart of the prediction process.  
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network (RNN) to deal with time-series problem. The most significant 
contribution of LSTM is the innovation of “gates” to control its de
pendency on historical information, which are forget gate, input gate 
and output gate. Assumed that input deep feature series are p = (p1, p2,

⋯pt,⋯pn) and the output series areq = (q1,q2,⋯qt,⋯qn), the procedure 
of calculation is shown in Fig. 8 as follows [33]: 

f t = sigmoid
(
Wf ∙[ht− 1, pt] + bf )

it = sigmoid(Wi∙[ht− 1, pt] + bi)

Ct = tanh(WC∙[ht− 1, pt] + bC)

ot = sigmoid(Wo∙[ht− 1, pt] + bo) (4)  

Ct = f t*Ct− 1 + it*Ct  

ht = ot*softsign(Ct)

qt = sigmoid(Wy∙ht + by),

wheref t, it andot respectively represents the forget gate, input gate 
and output gate function. The expression of the non-linear activators 
(tanh, sigmoid and softsign) can be found in Ref. [35]. 

3.2.3. Performance criteria 
The general performance of the current model is provided in this 

section. To evaluate this, the following three criteria for regression task 
were used in this work. It should be noticed that, the first two losses (i.e. 
MAE and RMSE) focused on whole spatial–temporal data while the third 
one (i.e.R2) was for an arbitrary site over the timeline: 

MAE =
1
N

∑N

i=1

⃒
⃒
⃒Xi − X̂ i

⃒
⃒
⃒ (5)  

Fig. 4. Framework of CNN-LSTM model.  

Fig. 5. Flowchart of CNN model as an auto-encoder.  
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

(
Xi − X̂ i

)2

√
√
√
√ (6)  

R2 = 1 −

∑n
i=1

(
Xi − X̂ i

)2

∑n
i=1

(
Xi − Xi

)2 , (7) 

where n is the number of timestamp in test series; N is the number of 
wind speed data, equalling the product of the number of timestamps in 
test series and the number of sites; X, X̂ are the observed and predicted 
wind speed for each site over the wind history; X is the mean value of 
wind speed for the site. 

4. Results and discussion 

In this section, the model performance is investigated through the 
comparison with mainstream models. In Section 4.1, the evaluations are 
presented in terms of different error standards. Further, in Sections 4.2 

Fig. 6. Illustration of padding and convolutional computation in CNN.  

Fig. 7. Illustration of max pooling in CNN.  

Fig. 8. Structure of LSTM unit with three gates [34].  
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and 4.3, the results are elaborately analyzed and discussed from tem
poral and spatial aspects of view. 

The numerical studies of this work were performed on Python 3.8 
platform with keras [34] deep learning package on the server of: (CPU: 
Intel(R) Core(TM) i7-7500 @2.70 GHz; GPU: 1080 Ti 11G). 

4.1. General performance 

Under the standards in Section 3.2.3, the comparative analysis was 
conducted with three benchmarks: the persistence model, the back- 
propagate ANN model and the LSTM model, which typically repre
sented the model of linear, basic non-linear, non-linear with temporal 
information and non-linear with both temporal and spatial information, 
respectively. It should be noticed that, these models were carefully 
designed and trained. For instance, the ANN model had 3 hidden layers 
with totally 350 units (activation function: tanh) and adopted a small 
initial learning rate of 1e− 4 with the Adam [36] optimizer. Also, the 
LSTM model adopted two LSTM layers of 50 units (activation function: 
softsign) and one fully-connected layer as the output layer. The overall 
trainable parameters for ANN and LSTM were over 50,000. The pre
diction results for the persistence model, ANN, LSTM and CNN-LSTM are 
shown below in Fig. 9 and Table 2: 

It can be found that, starting from the linear benchmark, the pre
diction error is continuously decreasing when the model gradually be
comes sophisticated. The MAE value impressively dropped to 0.35 m/s 
for the current model, decreasing by 32.7%, 28.8% and 18.9% from 
persistence, ANN and LSTM model. In addition, under the criteria of 
RMSE, since this standard is sensitive to the large individual errors, the 
assessment value of four models all witnessed an increase. However, 
there was still a large decrease of the proposed model from the parallel 
models, accounting for 32.3%, 26.0% and 18.3%, respectively. 

These results demonstrate that, for a target wind farm region, taking 
temporal and spatial correlation of wind speed into consideration can 
effectively enhance its overall prediction accuracy. To further analysis 
this, discussions on those two aspects are presented in the next sections. 

4.2. Temporal comparison 

To investigate the degree of the temporal change of prediction series 
fitting with the observation, the determination coefficient R2 is used for 
each site. 

The comparison among the mean values of R2 for all sites in different 
models is shown in Fig. 10 as below. As it can be found, similar to the 
trend in Fig. 9, the fitness of the prediction to the observation witnessed 
a continuous climbing as the model evolved from linear. Out of all al
gorithm, the predictions from CNN-LSTM model could best explain the 

variation of real wind history. 
In addition, three sites among total 100 sites are selected for further 

analytical study, which are separately located at the north-east (No. (2, 
9)), middle (No. (5, 6)), and south-west (No. (9, 2)) part of the wind farm 
array. 

To clearly show the time variation, the curves are zoomed into 
several one-week series, respectively from the beginning, middle and 
ending of the testing time series for different sites, as in Fig. 11: 

It can be drawn from Fig. 11, though all models could generally 
reproduce the trend of real wind variation, the R2 of the current model 
was higher than any other model in each site and its prediction curve 
(blue line) was closer to the observation (red line). In Fig. 11(a), there 
was a sharp drop followed by an abrupt increase of wind speed in the 
latter half of the series, such changes were accurately predicted by 
current model while other curves were right-shifted to different extents. 
In Fig. 11(b), we can find that the changing rate of the wind speed was 
mild and the variation range was small. Nevertheless, it could also be 
told that the error between current prediction and the observation was 
smaller than other models. Compared with the yellow line (ANN) and 
purple line (LSTM), there were less excessive fluctuations in the blue 
curve. As a result, it was flattened closer to the real line. Finally in 
Fig. 11(c), all machine learning models showed inferior performance of 
R2 on this site, while the results of persistence model were improved, 
showing an increase of linearity of series. However, the CNN-LSTM still 
showed its outperformance in several details, such as the prediction of 
wind speed climbing at the half and the trailing part of the series. 

All of the above results and analysis indicate that the prediction from 
CNN-LSTM model could be better fitted with the real wind history along 
the timeline. Meanwhile, despite different location of the sites in wind 
farm, the proposed algorithm presents a satisfied robustness over other 
models. 

4.3. Spatial comparison 

Besides the better fitness in temporal series for each single site, the 
current CNN-LSTM model shows its specific power in providing the 
spatial information of the wind farm, which serves a helpful reference 
for the wind grid regulation. 

In this section, to focus on the distribution of the wind speed over the 

Fig. 9. Bar graph comparison of MAE and RMSE values of different models.  

Table 2 
Comparison of accuracy between different models.  

Models 
criteria 

Persistence ANN LSTM CNN-LSTM (Proposed 
model) 

MAE (m/s)  0.5219  0.4932  0.4328  0.3509 
RMSE (m/s)  0.7677  0.7013  0.6362  0.5193  
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region, three typical kinds of timestamps from the beginning, middle 
and ending of the test series are selected to illustrate the superiority of 
current model over parallel benchmarks. The compared models include 
the proposed model (CNN-LSTM), LSTM, ANN and the linear model 
(persistence). In order to depict the wind speed contours, the wind speed 
heat maps are used in the following discussion, where the larger the 

wind speed is, the brighter the corresponding area will be. 
As shown in Fig. 12, through the comparison of the observation with 

persistence model, we can find that wind speed distribution was regular 
and it had undergone a minor change over the past 2 h. The overall wind 
contour had experienced a slightly east-shift from the timestamp ahead. 
In parallel machine learning models, the predictions had undergone 

Fig. 10. Comparison of mean R2 between prediction and observation of wind speed among sites using different models.  

Fig. 11. Comparison of one-week extraction from testing series on different sites using different models: (a): Timestamp: 49 to 133; Location: north-east (2, 9). (b): 
Timestamp: 1101 to 1185; Location: middle (5, 6). (c): Timestamp: 2537 to 2621; Location: south-west (9, 2). 
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“excessive learning”, where the figure of LSTM model had bent the 
contours and the ANN result showed an even worse distortion. However, 
by comparing CNN-LSTM with the observation, the proposed model had 
clearly kept the wind speed layer structured and successfully captured 
this high-linear variation trend. 

Next, as shown in Fig. 13, a relatively larger change of the wind 
speed distribution occurred in some parts of this region. The high wind 

speed zones shrank and appeared in the west-north corner of the region 
while the low wind speed zone also became smaller and appeared in the 
east-south of the wind farm. Such trend could not be well forecasted by 
merely using temporal model (i.e. LSTM). Moreover, in this comparison, 
the overall MAE of CNN-LSTM (0.164) was dramatically lower than 
ANN (0.422) and persistence (0.445) model, and its wind speed heat 
map was evidentially more similar to the true label than LSTM: the 

Fig. 12. Regional wind speed heat map of No. 2474 time step in test set.  

Fig. 13. Regional wind speed heat map of No. 432 time step in test set.  

Y. Chen et al.                                                                                                                                                                                                                                    



Energy Conversion and Management 244 (2021) 114451

10

boundary of wind speed contour was clearer and the distribution was 
more consistent to the real. Such results strongly demonstrated the 
power of CNN filters in capturing spatial features of the wind farm. 

Finally, in the third instance (Fig. 14), a totally inverted wind speed 
distributions are presented in the maps of observation and persistence. 
The low wind speed zone had moved from the north to the south part of 
the region while the high wind speed zone had suddenly broadcasted 
from the east. Such dramatic change contributed to a high loss (0.627) of 
persistence model. Under this circumstance, the CNN-LSTM model still 
well-depicted this trend, despite that the boundary of high-low speed 
zone was not as smooth as the observation. However, other machine 
learning models could hardly reflect such variation, with various frag
ments of wind speed zone scattered in their prediction maps and their 
MAE loss are considerably lower than CNN-LSTM. 

All of the above comparison shows the reliability of the current 
model for wind speed forecasting under different wind variation con
ditions, indicating the involvement of CNN can greatly help to improve 
the stability of the estimation on regional wind speed distribution. 

The reasons for the superiority of the proposed CNN-LSTM model can 
be considered from two aspects. First, it attributes to the “dimensionality 
reduction” of the auto-encoder. For the current problem of wind speed 
prediction regarding a 2-D regional wind farm, since the magnitude of 
wind speed should gradually, instead of abruptly, change between 
adjacent sites, there exists multi-collinearity between the high- 
dimension input features. For machine learning algorithms using this 
input (e.g. ANN and LSTM in this work), such multi-collinearity could 
lead to the instability of the solution space [37], making it difficult to 
learn the pattern of the dataset, hence hinders the generalization of the 
model. However, through the auto-encoder, the high dimensional inputs 
can be transformed into the latent representations with much lower 
dimension. Such embedding vectors retain the essential characteristics 
of the raw input while mitigating the relevance among features. Mean
while, its reduced dimensionality helps cut down the number of un
trained parameters of the regressor, which could benefit the 
convergence of the training process and save the computational budget. 

The second reason is that there are the better results owe to the 

CNN’s capability to learn the spatial structure of the provided image. 
The wind speeds of 2-D regional wind farm are spatially correlated. 
Purely using the fully-connected neural networks for prediction will lose 
the spatial relevance among input features, because they treat the wind 
speed measurements that are far away and close to each other on the 
same basis [38]. However, CNN can make full use of the regional in
formation by using multiple small-sized convolutional filters to gradu
ally extract the local distributions from the global wind speed map. 
Meanwhile, the pooling layer, keeping only the dominant features each 
time, can reduce the noise transmission [38]. As a result, the low- 
dimensional deep feature retains the essential spatial representation 
from the raw 2-D input, and when it is sent to the LSTM model to train 
the predictor, the predicted results will also contain the spatial 
information. 

5. Conclusion and future work 

In this work, aiming at a 2-D regional wind farm, a novel deep 
learning model was proposed for the short-term wind speed prediction 
of the site array. The model was composed of two main modules: CNN 
and LSTM. After the orthogonalization pre-processing, the wind speed 
components array was first trained by a CNN model as a structured 2D 
matrix, where the input and output were strictly identical and the 
product was the deep feature at the half-way of the network that in
tegrates the spatial information of the wind farm. Next, through the 
LSTM unit, such deep feature was recurrently predicted along the 
timeline, using deep information from the past steps. Then, those fore
casted deep features were sent back into the second-half of CNN model, 
known as the decoder, to restitute the 2D matrix of the wind speed 
components. In the end, the final prediction of the wind site array was 
the vector sum of the above components prediction. 

The effectiveness and reliability of the proposed CNN-LSTM model 
have been comprehensively validated through analytical study. In terms 
of different assessments, including MAE, RMSE and R2, the current 
model presents considerable enhancements over the parallel main
stream models. The parallel modes are intentionally selected as 

Fig. 14. Regional wind speed heat map of No. 1321 time step in test set.  
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persistence (representing linear model), ANN (representing naïve non- 
linear model) and LSTM (representing non-linear model considering 
temporal relations). The general improvement of MAE and RMSE are 
around 32%, 27% and 18% over those benchmarks, showing an 
impressive stepping increase. 

Moreover, this study has emphasized the discussion of the current 
model on the prediction of the wind speed distribution of the regional 
wind farm. Thanks to the CNN algorithm, the model successfully fore
casted the contour of wind speed zone under different scenarios, with 
clear and distinct boundaries between speed zones. However, there were 
various fragments of fake speed zones in other models and their per
formance were evidently lower than the proposed approach. This 
showed the unique power of CNN-LSTM both in temporal series fore
casting and in spatial estimation. Such character would hopefully 
improve the resource allocation and management for the target wind 
farm. 

In the future, the following aspects are considered to enrich the 
current work. Firstly, more 2-D regional wind farm datasets around 
different areas of the world could be added to test the generalization 
ability of the model; Second, various pre-processing techniques could be 
used and compared to further enhance the prediction accuracy; Third, 
criteria could be conceived to quantitatively assess the distribution of 
wind speed in the region and based on such criteria, a more specific 
algorithm for spatial wind speed prediction could be designed. 
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