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A B S T R A C T   

The maximum lift-to-drag coefficient of an airfoil directly affects the aerodynamic performance of wind turbine. 
Machine learning methods are known for being really effective in helping to predict this parameter in a faster and 
more accurate way. So far, the majority of related studies have focused on the use of artificial neural networks to 
make this prediction, but this model has issues with its poor interpretation and the confidence level of its results 
was unclear. In this paper, a novel framework is proposed, involving the Gaussian process regression and a 
hybrid feature mining process. The aim is to use the new framework to evaluate the maximum lift-to-drag ratio of 
given airfoils under a turbulent flow condition, where the Reynolds number is around 100,000. The feature 
mining process here designed contains a hybrid feature pool that comprises various geometric characters, and a 
hybrid feature selector that can assist the prediction performance and make it better. Based on the airfoil dataset 
of the University of Illinois at Urbana-Champaign that contains a total of 1432 profiles, a comparative analysis 
was conducted. The results showed that the current framework can provide a more accurate estimate than 
parallel models in both single-point and interval aspects of view. Noticeably, the model reached an overall 
precision of 95.2% and 94.1% on training and testing sets, respectively. Moreover, the simplicity and the con-
fidence reference from the model output were further illustrated with a case study, which also verified that how 
it can serve real engineering application.   

1. Introduction 

Due to growing environmental issues, many countries are turning to 
renewable sources of energy. Among these, wind power is the most 
prevalent [1]. This energy source relies on turbines to convert wind to 
electricity and has attracted the attention of many scholars recently [1]. 

Researches have shown positive correlation between the designed tip 
speed ratio of wind turbine’s peak power coefficient and the lift-to-drag 
ratio of the blades, and the rotor will achieve its desirable working stage 
as the blades operate around the maximum ratio [2]. Therefore, being 
able to predict this ratio is of great importance during the early design 
stage of the engine. 

Traditionally, the analysis of the maximum lift-to-drag ratio depends 
on experimental procedures (e.g. wind-tunnel test [3], field test [4]) and 
numerical measurements (e.g. XFOIL, StarCCM + and Fluent) that are 

based on aerodynamic theories [5] using different turbulence models 
[6]. These methods are time-consuming since they require specific 
equipment settings and measuring and post-processing stages [7]. 
However, owing to the development of data science and artificial in-
telligence, machine learning (ML) based methods are boosting as an 
effective alternative to evaluate airfoil performance. Such methods have 
greatly accelerated the predicting speed and are well known for also 
guaranteeing its precision [8]. 

So far, researchers of this field mainly used artificial neural networks 
(ANN) as their ML models. For instance, Sahuck (2020) [9] used a two- 
hidden-layer ANN for maximum lift-to-drag ratio prediction and 
compared the results with the response surface method. In his study, 
different distributions of control points were investigated as the input 
feature and the structure of neural network was systematically tuned. 
Similarly, Wen et al. (2019) [10] adopted a back-propagation ANN to 
make the same prediction, with hyper-parameters that were 
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heuristically selected. The accuracy of their prediction was reaching 
90%. In the same research direction, Viquerat et al. (2020) [11] termi-
nated their model structure with two fully connected ANN layers to 
predict the drag of an arbitrary 2D airfoil. Because the flow condition 
was under a laminar stage, their work presented an impressive result 
with maximum relative error less than 2%. Despite the merit outcomes 
of the aforementioned studies, there are two main disadvantages of 
using ANN models for airfoil evaluation. On the one hand, since the 
ANNs are “black box” models [12], designers cannot comprehend how 
changing inputs can influence the prediction. On the other hand, the 
outcomes of ANN models are merely single-point estimates, which are 
inadequate for designers to properly evaluate the accuracy and validity 
of their prediction. Therefore, facilitated its understanding, the model 
should be re-designed in a way that solves the issues with reliability and 
interpretability. 

A promising alternative to fill this gap is using the Bayesian learning 
methods, which include a typical algorithm: Gaussian process regression 
(GPR). Different from the ANN models, the results of the GRP are based 
on probabilities, which promotes one single aero-performance predic-
tion and a confidence interval for users to assess risks [13]. Furthermore, 
the GPR belongs to the group of “non-parametric methods”, which 
means that the parameters of the model will automatically self-update as 
the dataset is expanding. This can render its strong ability of 

generalization from a small-scaled dataset [14]. Some pioneers have 
employed the GPR on relative engineering investigations. For instance, 
Ref. [15] focused on establishing correlations between different types of 
aerodynamic characteristics, and Ref. [16] tried to use GPR in modeling 
wind energy time-series problems. However, it is important to address 
that few scholars have shown concerns about the implementation of the 
GPR on the maximum lift-to-drag prediction of different airfoils under a 
high Reynolds number. 

To conduct the GPR on the current problem, it is first necessary to 
determine the most meaningful and suitable inputs of parameters that 
describe the airfoil features. This step is crucial because the GPR is non- 
sparse [14], meaning that it cannot use embedded algorithms to 
penalize or to eliminate the unwanted inputs while training, such as the 
different regulators in ANN [11], to overcome the model overfitting. 
Hence, for the GPR, it renders an elaborated feature mining process on 
inputs, which generally comprises two connected procedures: i) the 
construction of the feature pool that involves the potential features, such 
as average thickness or maximum camber of the airfoil, and ii) a careful 
feature selection process that detects the most useful features of the pool 
to improve the prediction accuracy as much as possible. 

Previous researches have proposed various approaches to find po-
tential parameters to describe the airfoil geometry. Generally, they can 
be categorized into three types, as listed in Table 1. Among them, the 

Nomenclature 

Abbreviations 
ANN Artificial Neural Network 
CART Classification and Regression Trees 
EVS Explained Variance Score 
IWSS Incremental Wrapper-based Subset Selection 
PARSEC Parametric Sections 
RF Random Forest 
CST Class-Shape Transformation 
DT Decision Tree 
GPR Gaussian process regression 
ML Machine Learning 
RBF Radial Basis Function 
SFS Sequential Forward Selection 

Symbols 
Cl Lift coefficient 
Cd Drag coefficient 
Cm Moment coefficient 
Cl/Cd Lift-to-drag ratio (i.e. Sliding ratio) 
Ti Thickness of ith node of airfoil 
Ci Camber of ith node of airfoil 
Ki Curvature of ith node of airfoil 
yupper

i y-coordinate of ith node at airfoil upper surface 
ylower

i y-coordinate of ith node at airfoil lower surface 
d Euclidean distance between airfoil nodes 
Si− 1,i,i+1 Triangle area formed ith and adjacent nodes 
X x-coordinate on normalized airfoil 
Tmax Max thickness 
XTmax Max thickness location 
Cmax Max camber 
XCmax Max camber location 
T Total mean thickness 
C Total mean camber 
Tlead Mean thickness at leading part 
ω Current feature set 
Q(ω) Interval prediction estimator 

ŷ Normal distribution from GPR prediction 
σ Standard deviation of GPR prediction 
Var(Â⋅) Variance 
α0 Noise level of GPR 
η Constant kernel value of GPR 
λσ0 Value of λσ in current model 
Nshuffle Times of re-shuffle to compute the feature importance in 

RF 
Tmid Mean thickness at middle part 
Ttrail Mean thickness at trailing part 
Ktop Top-most surface curvature 
Kbot Bot-most surface curvature 
Tc/4 Thickness at 1/4 chord 
Tc/2 Thickness at 1/2 chord 
T3c/4 Thickness at 3/4 chord 
Cc/4 Camber at 1/4 chord 
Cc/2 Camber at 1/2 chord 
C3c/4 Camber at 3/4 chord 
D Training dataset 
xi Input of training dataset 
yi Output of training dataset 
Lt Loss of tth tree node in RF 
j Index of feature 
I(j) Feature importance of jth feature 
T Total number of tree nodes in RF 
Nt Number of trees in RF 
Ntrn Number of training airfoils 
P(ω) Point prediction estimator 
λσ Weight item in objective function 
ŷ Mean value of GPR prediction 
k(Â⋅) Kernel function of GPR 
σset Mean standard deviation of dataset 
lrbf RBF length scale of GPR 
Nt Number of trees in RF 
μ Point prediction of GPR in case study 
Ssplit Minimum number of samples required to split an internal 

node in RF  
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most straightforward strategy is to use control-points to fit the contour 
through Bessel splines [9]. However, it is often challenging to allocate 
such points, let alone there is a Pareto balance between the total dot 
number and the geometrical similarities [17]. Besides, curve functions 
are an alternative for airfoil shape-construction. Based on this possibil-
ity, many researchers have shown their interests in applications of the 
well-known Joukowski transformation [18] and its simplified versions 
that consider the airfoil camber line and its thickness distribution [19]. 
Others may divide the whole profile into local components such as 
PARSEC [20] based methods in Ref. [21], or class-shape transformation 
(CST) based method in Ref. [22]. Compared with the control-points, one 
appealing merit of this type is its parameters often possess direct phys-
ical meanings, and this can allow users alter those features more effec-
tively [23]. However, these parameters can be redundant since they 
were initially designed for shape-formulation and not for aerodynamic 
prediction [21]. Also, one curve expression usually does not cover a 
wide range of shape types, say, profiles not obeying the conformal rules 
of Joukowski transformation [24]. To solve this issue, more end-to-end 
methods are necessary, such as figure-based approaches (refer to 
Table 1. Row 3), so the airfoil contours can be transformed into 2D pixel- 
array and its deep features can be extracted with the help of convolu-
tional kernels [25]. Nevertheless, such methods are not easy to imple-
ment in applications. To reproduce this technology, one should first 
format the target profile into the graph according to the given resolution 
and airfoil location [26]. Also, although the deep features can be auto-
matically learned by ML models, their meanings are not fully understood 
due to the complexity of hyper-parameter tuning for the best convolu-
tional kernels. 

Focused on the second step only, there are various feature selection 
techniques that can be used to enhance the prediction’s accuracy. Such 
process can be regarded as a re-extraction of the potential inputs to 
better fit the machine learning model. Typical feature selection methods 
can be classified into wrapper-based and filter-based approaches, ac-
cording to whether the selection is simultaneously processed with the 
regressor by turns. However, for wrapper-based methods, despite of a 
satisfactory outcome, the computational costs involving them are 
considerably high [12], especially when coupled with an expensive 
learning model – e.g., the Gaussian process regression. When it comes to 
filter based methods, e.g., uni-variate feature selection and tree-based 
selection [29], although the selection speed is fast, the performance of 
the sub-set may sometimes not be efficient since the selector is often 
decoupled with the regressor. 

By synthesizing the benefits and limits of the above methods, a 
hybrid feature mining approach is proposed, containing both a hybrid 
feature pool and a hybrid feature selector. The hybrid pool’s contra-
dicting to point-based and functions-based features, makes it highly 

compatible and extensible. This happens because all potential features 
are considered global or local geometric attributes of the given airfoil, 
instead of parameters that should mathematically compute the whole 
profile in detail. Also, different from figure-based methods, these fea-
tures are extremely convenient when it comes to computing the airfoil 
contour, and has explicit geometric meanings to make the model more 
interpretable. In addition, a hybrid feature selector is also proposed in 
this work to assist the process of feature selection. Such selector in-
tegrates the tree-based selector (that acts as a filter) and the sequential 
forward selector (that acts as a wrapper) as a way to improve the pre-
diction accuracy with a reduced computational budget. A detailed 
description of this hybrid approach is presented in the “Methods” 
section. 

In all, this paper proposes an integrated machine learning framework 
used to predict the maximum lift-to-drag ratio of a given airfoil in a 
probabilistic, interpretable and accurate way. The process involves a 
combination of the aforementioned hybrid feature mining approach and 
the GPR predictor. First, using the coordinates of the given profile, the 
potential geometric attributes are extracted to form the hybrid feature 
pool. Then, the maximum lift-to-drag ratio and its confidence level are 
estimated using the GPR model, which was elaborately trained through 
a hybrid feature selection to promote its accuracy. Such selection in-
cludes two parts in tandem: i). a tree-based selector to initially deter-
mine the significance of the geometric attributes of the hybrid feature 
pool; ii). a wrapper-based selector to iteratively couples with the GPR 
model to promote a recurrent feature selection, downward along the 
rank of the feature significance. The original aspects of this study are 
stated as follows:  

1 A novel statistical model based on the GPR was built, with the aim to 
offer both single-point and interval prediction of the maximum Cl/Cd 
for the given airfoil under a turbulence flow condition.  

2 A novel hybrid feature mining approach was proposed to promote 
the prediction accuracy of the GPR model, not only to attempt a more 
precise point estimation but also a more concentrated interval 
estimation.  

3 The framework is totally end-to-end and the input features are 
completely interpretable, having explicit meanings from the profile 
geometry.  

4 The feasibility of the framework was tested by a large airfoil dataset 
obtained from University of Illinois at Urbana-Champaign (UIUC) 
[30], followed by a clear annotation of the case study to enrich the 
engineering reference from the outcome. 

The roadmap of the article is as below. Section 2 will describe the 
raw dataset and the way of pre-processing. In Section 3, the methods of 
the framework will be explained, including feature extraction, hybrid 
feature selection and GPR. Section 4 will demonstrate and discuss the 
numerical results. Finally, in Section 5, solid conclusions will be sum-
marized and the future work will be presented. 

2. Raw dataset and pre-processing 

In this section, the source and overview of the airfoil dataset (Section 
2.1) as well as the approaches of pre-processing (Section 2.2) are 
presented. 

2.1. Raw data description 

The raw airfoil database of this work was obtained from the up-to- 
date UIUC data site that is publically available [30]. The database, 
which has been widely used and cited in previous researches [31], 
comprises two main parts. One is the profile shape that was depicted by 
bunches of x-y coordinates, belonging to a variety of airfoil families, e.g. 
NACA, Boeing, NASA, etc. The other is the airfoil performance, which 
was mostly evaluated through UIUC Low-Speed Airfoil Test program 

Table 1 
Comparison of methods for feature generation in aerodynamic performance 
prediction of airfoils.  

Methods Publications Peculiarities Set-backs 

Control point 
based 

[9,10,17] Easy-implemented 
and widespread 
used; adopts extra 
methods to fit the 
profile 

Poor generalization; 
challenging to 
determine the best 
number and the 
location of control 
points 

Curve 
function 
based 

[18,19,2122,27,28] Some features 
have direct or 
indirect physical 
meanings 

Sometimes 
redundant; Often 
limited to a specific 
type or group of 
airfoils 

Figure based [11,25,26] End-to-end; deep 
features are auto- 
learned through 
convolutional 
kernels 

Poor interpretability; 
difficult to conduct 
and to reproduce in 
real applications  
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(LSATs) under a wide range of Reynolds numbers (from 60,000 to 
500,000) and angle of attacks. The tested aerodynamic parameters 
include the lift coefficient (Cl), drag coefficient (Cd) and moment coef-
ficient (Cm) etc. 

In this study, as a representative parameter of airfoil, the maximum 
lift-to-drag ratio is considered as the target to be investigated [10]. 
Meanwhile, to fit the flow condition for wind turbine applications [32], 
the target Reynolds number is chosen to be 100,000. 

2.2. Data pre-treatment 

In this section, a careful formalization is conducted on raw profile’s 
co-ordinates to make it more convenient to generate features for the 
upcoming ML model. 

Firstly, the starting points and end points of all airfoils are fixed, 
located at (0, 0) and (1, 0). If there is a bias (see Fig. 1), a translation or 
rotation would be conducted. Through this step, a same zero-base 
reference is constructed for every airfoil, hence it is convenient to find 
geometric attributes by simply calling the corresponding coordinates. 
Secondly, the same curve formulation method is applied on all airfoil 
coordinates. In this work, instead of using high-order Bezier splines, 
polygons are adopted to formulate the curve, since the raw coordinates 
list is stated to be the points along the upper and lower airfoil surfaces 
[30]. Depending on different given dots among different airfoils, this 
step allows the interpolation of the y value for any given x. Finally, the 
dataset is fully cleansed to wipe out the outliers as far as possible. The 
aberrations mainly include airfoils with an extremely thin thickness (e.g. 
E377 ultralight airfoil and its family [30]), airfoils with sharp local 
concaves (e.g. St. CYR171 airfoil [30]) or airfoils without a unit chord 
length (e.g. UA 79-SF-187 sailplane airfoil [30]), etc. 

As a result, the final number of the legal airfoils is counted to be 
1432, out of the total 1635 raw profiles. The geometry information and 
the max sliding ratio (Cl/Cd) of these airfoils are the final database 
feeding into the machine learning model. 

3. Methods 

In this section, the methods of the proposed machine learning 
framework are presented. As shown in Fig. 2, after pre-processing 
(Section 1), the workflow mainly includes three parts: the generation 
of hybrid feature pool, the hybrid feature selection and the maximum 

lift-to-drag ratio prediction through Gaussian process regression. The 
algorithm and the connection of these three parts will be introduced in 
Section 3.1, Section 3.2 and Section 3.3, respectively. 

3.1. Hybrid feature pool 

In this work, there were 17 potential geometry features considered 
for maximum sliding ratio prediction. The features were enlightened 
form the previous investigations, for instance, the PARSEC, CST and 
Joukowski transformation. The current feature pool comprised three 
main kinds of geometrical measurements, including thickness, middle 
line deflection (i.e. camber) and curvature. They could be easily calcu-
lated using the pre-processed co-ordinates of the airfoil through ex-
pressions below: 

Ti = yupper
i − ylower

i (1)  

Ci =
(
yupper

i + ylower
i

)/
2 (2)  

Ki = 4Si− 1,i,i+1
/

di− 1,idi,i+1di− 1,i+1, (3)  

whereTi,Ci and Ki denote the thickness, camber and curvature of ith 

node; yupper
i and ylower

i respectively denote the y-coordinates on upper and 
lower surface; d is the Euclidean distance between points; Si− 1,i,i+1 is the 
triangle area formed by ith and its adjacent points. 

As shown in Table 2 and Fig. 3, the current features were categorized 
into three levels. (i). global parameters, including the average and max 
thickness (camber) and their locations; (ii). local profile features in 
vertical or transverse directions, including the average thickness over 
different parts of the airfoil (from the lead to trail) and the curvatures of 
the top-most and bottom-most surface; (iii). single-point features rep-
resenting the thickness (and camber) at quartering sections. 

Obviously, this hybrid feature pool could be further expanded by 
adding other geometric parameters, but temporarily in this work, those 
17 features are used as a basic trail. 

3.2. Hybrid feature selection 

A hybrid feature selection method was built in this work, comprising 
both filter and wrapper based selectors. To begin with, the random forest 
(RF) algorithm was used to provide a sorted sequence consisting of the 

Fig. 1. Illustration of the reformulation on raw airfoil coordinates [30] (No. 00599, Airfoil name: GOE 244 (MVA PR.4)).  
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quantified importance of each feature from the feature pool. Based on 
this, the sequential forward selection (SFS) was then implemented to 
further determine the sub-feature set for improving the prediction 

accuracy of the machine learning model: GPR. 
It is worth noting that such hydration is a trade-off, making their 

respective advantages complementary to each other. On the one hand, 
as a low budget warm-up, the RF algorithm can provide a filtrating 
routine, along which the SFS would smoothly proceed. Next, in return, 
the SFS method will re-check this order step by step through the coupled 
iteration with GPR, and improve the sub-feature set performance as a 
result. 

3.2.1. Random forest feature selection 
The core idea of tree-based feature filters is to eliminate unwanted 

features according to their importance. As a typical representative, the 
RF is an ensemble of a number of randomized basic selectors, known as 
the decision tree (DT). To be the milestone of such algorithm, the 
Classification and Regression Trees (CART) algorithm that originally 
developed by Breiman et al. [33] is adopted in this work. 

Given a training setD = {(x1, y1), (x2, y2)⋯(xNtrn , yNtrn )}, wherexi =

(x(1)
i ,x(2)

i ⋯x(n)
i ), the construction of DT regression is to find pairs of (j, s)

from treetop to the root to minimize the loss [33]: 

Lt =
∑

xi∈R1(j,s)

(yi − ĉ1 )
2
+

∑

xi∈R2(j,s)

(yi − ĉ2 )
2
, (4)  

where t is the tree node index;R1(j, s) =

{x(j)
i
⃒
⃒xi ≤ s},R2(j, s) = {x(j)

i
⃒
⃒xi > s} are sub-regions of x set under the 

current node; ĉ1 =
∑

xi∈R1(j,s)yi/N1, ĉ2 =
∑

xi∈R2(j,s)yi/N2 are the 

Fig. 2. Flowchart of the machine learning framework.  

Table 2 
Geometrical feature pool of airfoil for machine learning.  

Category Feature description Symbol 

Global feature Max thickness Tmax  

Max thickness location XTmax  

Max camber Cmax  

Max camber location XCmax  

Total mean thickness T  
Total mean camber C  

Local feature Mean thickness at leading part Tlead  

Mean thickness at middle part Tmid  

Mean thickness at trailing part Ttrail  

Top-most surface curvature Ktop  

Bot-most surface curvature Kbot  

Single feature Thickness at 1/4 chord Tc/4  

Thickness at 1/2 chord Tc/2  

Thickness at 3/4 chord T3c/4  

Camber at 1/4 chord Cc/4  

Camber at 1/2 chord Cc/2  

Camber at 3/4 chord C3c/4   
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averaged y values in each region. 
Once the regression tree has been fitted, the permutation importance 

I(j) of feature j is measured as follows: (i). Shufflex(j)and keep other 
columns unchanged; (ii). Make predictions using the shuffled dataset; 
and (iii). Calculate the deterioration of the loss functions by using 
shuffled dataset from the untreated one [13]. 

I(j) =
∑T

t=1
L(j)

t −
∑T

t=1
Lt, (5)  

where
∑T

t=1L(j)
t denotes the total loss function using the dataset with jth 

feature shuffled; T is the total number of tree nodes. 
As an ensemble, to control over-fitting by using just a single tree, the 

RF fits a number of randomized decision trees on various sub-samples of 
the training dataset through averaging. Therefore, the final feature 
importance is denoted by [34]: 

I(j) =
∑Nt

nt=1
I(j)nt

/

Nt, (6)  

whereNt is the number of trees in forest, set to be 200 in this work. 

3.2.2. Sequential forward selection 
Starting from the empty set, the SFS wraps the estimator to examine 

the feature performance in succession. However, this method is intrac-
table for high-dimensional problems because of the considerable 
amount of evaluations to be carried out [35]. For instance, the total 
evaluations for current feature pool should become17! ≈ 3.5trillions, 
which is impossible to accomplish with GPR as the predictor. 

To alleviate this problem, inspired by the concept of “Incremental 
Wrapper-based Subset Selection (IWSS)” [36], the idea is to connect the 
wrapper with the tree-based filter (Section 3.2.1) and in this paper, it is 
to let the SFS guided by the feature importance rank (Fig. 4). Here, the 
target functionJ(ω) to evaluate the model performance is defined as 
follows: 

J(ω) = P(ω)⋅Q(ω)
− λσ (7)  

where ω denotes the feature set through iteration; P(ω) and Q(ω) are the 
prediction accuracy estimators on target airfoil samples from pointed 
and interval aspects of view (Section 3.2.2); λσ > 0 is the weight item. 

Fig. 3. Illustration of geometrical features in feature pool (No. 00496; Airfoil name: FX 83-W-227).  

Fig. 4. Flowchart of the hybrid feature selection with feature rank provided by RF and wrapper conducted through SFS.  
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3.3. Gaussian process regression 

GPR is adopted as the maximum lift-to-drag ratio predictor of this 
work, owing to its good extensibility, strong compatibility with mod-
erate dataset and particular probabilistic outcomes for users to evaluate 
[14]. The theorem and the current application of GPR will be illustrated 
in following sub-sections. 

3.3.1. Basic equations 
Given a training setD = {(x1, y1), (x2, y2)⋯(xNtrn , yNtrn )}, the task of 

GPR is to forecast the ŷ* given the new inputx*. Based on Bayesian 

learning theory, GPR assumes that any finite set of ym =

[
ytrn
ŷ*

]

obeys a 

joint normal distribution with prior zero mean and covariance kernelk 
[14]: 
[

ytrn
ŷ*

]

∼ N

(

0,
[

k(xtrn, xtrn) k(xtrn, x*)

k(x*, xtrn) k(x*, x*)

])

(8)  

this probabilistically gives the distribution of ŷ* follows [37]: 

ŷ*
|x* ,xtrn ,ytrn

∼ N (ŷ*
, σ*) (9)  

ŷ*
= k(x*, xtrn)k(xtrn, xtrn)

− 1ytrn (10)  

σ* = k(x*, x*) − k(x*, xtrn)k(xtrn, xtrn)
− 1k(xtrn, x*) (11)  

where σ* is the standard deviation ofŷ*; the dimension of k(xtrn, x*)

equals to Ntrn × 1 for a single test sample of airfoil (i.e. ŷ* is a scalar), 
similarly for other kernel matrix. 

3.3.2. Performance criteria 
Generally, the coefficient of determination (R2) has been widely used 

to evaluate the regression models [38]. However, this score is feature- 
dependent and neglects bias in samples’ variance. Therefore, from the 
view of dataset expansion and unbiased estimation, the explained 
variance score (EVS) is used to evaluate the performance [13]: 

P(ω) = EVS(y, ŷ(ω) ) = 1 −
Var(y − ŷ(ω) )

Var(y)
(12)  

where y and ŷ are the real and the predicted maximum Cl/Cd of airfoil 
samples;Var(⋅) denotes the variance. 

In addition, to evaluate the GPR point-prediction from the degree of 
dispersion and its stability, another criteria,Q(ω) is defined as follows: 

Q(ω) = σset(ω) =
∑Nset

m=1
σ*

m(ω), (13)  

whereNset denotes the size of the training or test set; σ*
m(ω) is the stan-

dard deviation of prediction distribution of the mth sample given ω as the 
feature set. 

3.3.3. Learning techniques 
Several learning techniques are used to enhance the accuracy of 

prediction and strengthen the outcome reliability, including:  

(1) Normalization. Min-Max normalization was adopted on both 
input features and their labels of max lift-drag ratio.  

(2) Kernel production. The production of the constant kernel and 
RBF kernel [14] was applied during GPR process.  

(3) Grid hyper-parameter searching. The hyper-parameters of GPR, 
including the noise level (α0), the RBF length scale (lrbf ) and the 
constant value (η) of constant kernel, were systematically tuned 
through grids, with their distributions shown in Fig. 5 as below:  

(4) Cross-validation. The shuffle-split technique was used for cross- 
validation of the model, and in this work, such process was 
packaged with grid searching [13]. 

4. Results and discussion 

In this section, the numerical results will be progressively illustrated 
from three perspectives. In Section 4.1, the process of feature selection 
and model training will be presented and discussed. In Section 4.2, the 
performance of the maximum lift-to-drag ratio predictions over a group 
of airfoils (i.e. the dataset) will be comparatively analyzed, and this 
section has two branches: one for point estimate accuracy and the other 
is about the interval prediction accuracy measured by the mean standard 
deviation. Furthermore, in Section 4.3, there is a case study on a single 
airfoil to demonstrate how to apply this work in real application. 

4.1. Feature selection & model training 

Based on the proposed framework, the processes of feature selection 
(Section 4.1.1) and model training (Section 4.1.2) are first illustrated in 
this part. Also, in Section 4.1.3, the computation time will be addressed. 

4.1.1. Random forest filter: Sorted feature importance 
The hyper-parameters for RF structure are shown in Table 4. For 

every single regression tree among the forest, its depth has been 
expanded as far as possible, until that the minimum split number equals 
to 2 [15]. Moreover, a relative large number ofNt andNshuffle have been 
set to enhance the robustness of the whole forest. 

The importance rank of the geometric features of the feature pool is 
plotted in Fig. 6. As the chart shows, the values of the max thickness and 
the max camber location are considerably higher than any other fea-
tures. Noticeably, this is perfectly consistent with the naming principle 

Fig. 5. Hyper-parameters searching grids.  

Table 4 
Hyper-parameters [13] setting of RF algorithm.  

Symbol Nt  Nshuffle  Ssplit  

Definition Number of 
trees in the 
forest 

Times of re-shuffle to 
compute the feature 
importance 

Minimum number of 
samples required to split 
an internal node 

Value 200 100 2  
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of the well-known NACA 5–digit airfoils (also a part of the dataset) [39], 
which not only statistically but also mechanically explained their sig-
nificance for maximum lift-to-drag ratio prediction. 

Meanwhile, according to Fig. 6, control-point based features also 
have a large importance, where the 3/4 camber, 1/4 thickness, and mid- 
section values occupied the rank from third to sixth. This outcome can 
partially attribute to that once these points are determined, the overall 
outline of the airfoils will be formed. Given the current dataset has 
excluded airfoils with sharp concaves in pre-treatment, their aero- 
performance will hopefully be well-forecasted through such variables. 

On the reverse side, the curvatures on topmost and bottommost 
surfaces have indicated a minor correlation to the max Cl/Cd output, 
which is contradicted to some of the design parameters in PARSEC [20]. 
A possible reason for this is that compared with the thickness and 
camber, these curvatures are even detailed geometric values for the 
profile. Hence, given such a large distribution of airfoils at present, these 
parameters may pose an inferior correlation on aero-performance than 
they did in airfoil set where profiles are generally more similar to each 
other. 

4.1.2. Training process of sequential forward selection-Gaussian process 
regression 

According to the above feature significance, the SFS-GPR training 
process was conducted. The “max thickness”, which occupied the largest 
feature importance, was used to initialize the GPR model. Through the 
grid search technique, the main model parameters are shown in Table 5 
as below. The first three parameters were used to construct the kernel 
function of GPR and the last parameter defined the weight item in the 
target function of SFS (Formula 7). 

Fig. 7 illustrates the changes of the objective function during the SFS- 
GPR process on training airfoils group, where the dot means that the 
corresponding feature was preserved while triangle denotes the depre-
cation. As it can be found, most of the high-rank features were pre-
served, except for the max thickness position. The last three features 
were all deprecated, since appending neither of them as the feature 

could additionally enhance the overall performance. As a comparison, 
the corresponding changes on testing airfoils are shown in Fig. 8. It 
should be noted that these samples had never been exposed to the model 
during the SFS-GPR process. 

In Figs. 8 and 9, a similar tendency can be found between the two 
curves. The deprecated features that lowered down the performance on 
training airfoils also reduced the objective function value on test sam-
ples. At the same time, a “fast followed by slow“ trend of increase can be 
observed in curves for both training and testing samples, indicating that 
the degree of improvement of GPR accuracy would gradually drop as its 
feature dimension increases. The main difference between the curves is 
on their beginning part, where the objective function value is particu-
larly low on testing samples. One reason for this may be the number of 
test samples were too small to fit the kernel while the input features has 
such low dimension. Afterwards, when more features participated into 
the input set, the objective function values on training and testing set 
became closer. 

4.1.3. Computational cost 
For machine learning approaches, although it is quite rapid (less than 

a second) to make the prediction when the model was established, it is 
important to address the training cost of the model. The whole model 
was trained through Python 3.8 platform on a domestic server: Inter (R) 
Xeon (R) CPU E5-2673 v4 @ 2.30 GHz, and the whole code was 
developed based on scikit-learn packages [13]. The computation time is 
listed as follows in Table 6. 

As shown in Table. 6, based on the current dataset and the proposed 
framework, apart from the neglectable time for prediction, the total 
training time is less than 7 min. Hence, it is acceptable for further model 
update. 

4.2. Prediction performance on airfoil groups 

In this section, aiming on the training and testing sets of airfoils, the 
prediction performance from the proposed model will be discussed. The 
discussion will be presented in two aspects: the regression accuracy for 
point estimate (Section 4.2.1) and the concentration degree for interval 
estimate (Section 4.2.2). Furthermore, the sensitivity of the weight item 
λσ on prediction results will be presented in Section 4.2.3. 

4.2.1. Regression accuracy for point estimate 
To assess the point-prediction performance on regression task, the 

Fig. 6. Normalized feature importance of the hybrid feature pool through RF model.  

Table 5 
Parameters [14] setting of SFS-GPR.  

Symbol α0  lrbf  η  λσ  

Value  0.001  0.6  0.1  0.05  
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EVS values (Formula 12) on the target airfoil groups are used in this 
work. First, the scatter-plots between the observed maximum lift-to-drag 
ratios and their point estimates for both training and testing airfoils are 
shown in Fig. 9. In addition, the scatter-plots and EVS values of the full- 
feature GPR model and the ANN model are also shown aside as 
comparison. 

As shown in Fig. 9 (a) to (c), on training airfoil group, the point- 
prediction performances among different models are comparable, with 
their EVS values all above 0.9. For GPR model with selected feature set, 
the value is 0.952, which is slightly lower than all-feature GPR model 
(0.961) but appreciably higher than the ANN model (0.911). The dif-
ference of the model performance can also be told from the scatter 
distribution around the isoline. The width of the current scatter-bar is 
mildly broader than all-feature GPR model while narrower than that of 
the ANN. It should be noted that, this ANN model has been carefully 
designed, adopting a 4-hidden-layer structure and over 650 parameters 
updated by Adam [40] optimizer at a learning rate of 5e-4. 

However, for the testing airfoils (Fig. 9 (d) to (f)), the point- 
prediction performance of the proposed method has an evident superi-
ority over the other models. As in Fig. 9 (e), a large overfitting can be 
found in all-feature GPR model, whose EVS value for testing set 
dramatically drops from 0.961 to 0.858. Similar in ANN model, the 

accuracy matrix drops to 0.879 on testing airfoil group. While by using 
the GPR model with selected feature set, the prediction accuracy 
maintained itself at a high value of 0.941. 

In addition, Fig. 10 shows the variation of predicted maximum lift- 
to-drag ratio on testing set together with the UIUC observations [30]. 
As it can be found, the curves of the current model (black line) can better 
fit the changes of the observations (red line) almost in every testing 
airfoil. While using all-feature GPR and ANN models, some large pre-
diction bias can be found, such as the marked airfoil samples within blue 
rectangles of Fig. 10. This indicates that the proposed algorithm can 
reflect a closer relationship between the airfoil geometry characters (i.e. 
the model inputs) and the target maximum lift-to-drag coefficient (i.e. 
the model output). 

4.2.2. Regression accuracy for interval estimate 
Apart from the point estimate for the maximum sliding ratio by using 

the mean predictions from GPR, the standard deviation (std.) is another 
important outcome and a performance criterion when using such model. 
It not only reflects to what extent the user could believe the point esti-
mate, but also contains a confidence interval to offer more design 
reference from the model. In this section, aiming at groups of airfoils (i. 
e. training set and testing set), this parameter is assessed first through 

Fig. 7. Changes of objective function during SFS-GPR process (on training airfoils).  

Fig. 8. Changes of objective function during SFS-GPR process (on testing airfoils).  
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their overall statistical values. 
As shown in Fig. 11, the mean and median std. of on both training 

and testing airfoil sets decreased after the feature selection process. For 
the median std., the charts are similar between training and testing set, 
where the current std. is about 20% cut-down from the all-feature GPR 
result. However, impressively, for the mean std. on testing airfoils, the 

value dramatically dropped from 1.502 to 0.894. Meanwhile, the dif-
ference between the mean std. on training and testing airfoils have 
largely shrunken, from 0.460 to 0.063. This implies that the feature 
selection can make the model more generalized to largely improve the 
prediction accuracy and the confidence for unseen samples. 

Fig. 12 shows a comparison of the detailed interval predictions on 
testing airfoils by using GPR models without (Fig. 12(a)) or with (Fig. 12 
(b)) current feature selection. As it can be found, no matter using all- 
feature or selected-feature as input, the observation value could 
mostly drop into the range with 98.7% confidence level (±2.5σ) around 
the point-prediction. However, the proposed GPR model can do better to 
offer a more accurate interval prediction form the following aspects. 

First, if its point estimate is considerably different from the all- 
feature GPR model (marked by triangles, Fig. 12), its value performs 
closer to the observation, which gives a more precise range of interval 
prediction. Second, if its point estimate is similar to the all-feature GPR 

Fig. 9. Performance comparison between current model and other models for the point estimate of max Cl/Cd on both training and testing airfoil groups.  

Table 6 
Computational time during model training and prediction.  

Procedure Computational time 

RF (with settings in Table 4) 2 min 34 s 
SFS-GPR (with settings in Table 5) Initialization 9.26 s 

Average time per step 15.22 s 
Total time 4 min 19 s 

Total training time 6 min 53 s 
Prediction time less than a second  

Fig. 10. Comparison of the max lift-to-drag ratio prediction variation on testing airfoils using different models [30].  
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model (marked within dashed circles, Fig. 12), the prediction range 
under the same interval prediction has also largely shrunken but also 
successfully covered the observation. In another word, by using the 
current GPR model, the same prediction interval would have a higher 
confidence level than naïve GPR model if its margin has just covered the 
real observations. These two points together confirmed the effectiveness 
of the current feature selection algorithm and shows the priority of the 
proposed model. 

4.2.3. Sensitivity of λσ 
As a key parameter for current SFS-GPR process that controls the 

weight allocation between two accuracy criteria (Formula 12, 13) from 
“point” and “interval” views, the value of λσ in Formula 7 has been 
carefully tuned in this work. In this section, its sensitivity on final model 
performance will be further discussed. 

The current λσ is denoted asλσ0 , which equals to 0.05 (Table 5). To 
investigate the parameter influence, target functions with different λσ 
values, equaling to 4, 2, 1.5, 1, 0.5 and 0.25 times ofλσ0 , were respec-
tively conducted. According to Formula 7, the larger value ofλσ , the 
greater the weight of assessing from the interval view would be. 

In Fig. 13, the final EVS on training samples first gradually decreases 
as the λσ keeps increasing from 0.25λσ0 toλσ0 , and stays flat afterwards. 
However on the testing set, despite the EVS value experiences an initial 

growing, reaching the maximum at 0.941 when λσ is in the range of 1.0 
to 1.5 times ofλσ0 , it immediately drops to 0.901 when the parameter 
continues enlarging to 2.0λσ0 or more. Therefore, the present λσ0 gives a 
local peak value assessed from the point estimate. 

In Fig. 14, the final mean standard deviations among training and 
testing samples are provided under various λσ values. As it can be found, 
the dispersion degrees of the prediction are relatively high for the 
boundary values of λσ , where the std. values for testing airfoils are larger 
than one. However, such value is gradually becoming small when λσ 
approaching the current value of λσ0 , representing that the distribution 
of the predictions is more concentrated and the predicting range with 
the same confidence interval is narrowing. Hence, this gives another 
local optima at the current λσ0 from the view of interval prediction. 

4.3. Case study on a single airfoil 

The above discussion has presented the merits of this work on a 
group of airfoils. In order to illustrate the routine of the framework for 
real application of wind turbine design, a case study on a specific airfoil, 
NACA 643–218, is presented in this section. Such airfoil belongs to the 
NACA 6-digit series and it was considered as a potential candidate for 
large wind turbine blades [41]. 

4.3.1. Instantiation 
Given the geometry of NACA 643–218, through the pre-processing, 

the airfoil is firstly normalized from the raw coordinates along its 
outline (Section 2.2). In Fig. 15, the prepared profile is plotted, which 
has a unit chord length and continuous shape curves. 

Then, based on the discrete coordinates from Fig. 15, the hybrid 
feature pool (Table 2) is formed using the Formula 1–3. Table 7 shows all 
17 features corresponding to the NACA 643–218 airfoil. Its max thick-
ness equals to 17.95% and is located at 34.92% chord from the leading 
edge. The max camber of the airfoil is only 1.09%, reflecting an overall 
symmetricity about the zero x-cord. 

Next, based on the hybrid selection methods, including the RF in 
Section 3.2.1 and SFS method in Section 3.2.2, the redundant features of 
Table 6 are eliminated. According to the results from Fig. 7, the depre-
cated features arexTmax ,Ktop,Kbot and Ttrail. Hence, the remaining 13 fea-
tures are used for the final regression task. 

As shown in Fig. 16, predicted by current GPR model, the estimation 
of its maximum lift-to-drag ratio is a Gaussian distribution. To be the 

Fig. 11. Comparison of the median and mean std. of GPR predictions between 
all-feature model and current model on both training and testing set. 

Fig. 12. Comparison of interval predictions of max lift-to-drag ratio on testing airfoils using: (a) non-selected features (b) selected features.  
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most straightforward usage, the designer could directly adopt the mean 
value μ of 39.45 as the point estimate. However, when making interval 
predictions, the other appealing outcome of GPR, standard deviationσ, 
would be taken into consideration (Section 4.3.2). 

4.3.2. Annotation for interval prediction 
Different from other machine learning algorithms, such as neural 

network that can only provide a single-point estimation [42], the GPR 
has its unique characteristic of interval prediction according to the 
empirical rule for Gaussian distribution [14]. 

As an annotation for the case of NACA 643-218 airfoil, the results 
from Fig. 16 told us that if the current model works: based on the current 

dataset and feature pool, there is 68.26% confidence for the given NACA 
643–218 airfoil, its max Cl/Cd ratio under Reynolds number of 100,000 
will fall into the interval from 38.64 to 40.26 (μ ± σ). For such prediction 
interval, the margin error is merely 0.81. As the prediction becomes 
more conservative, the confidence level is higher and the margin error is 
becoming larger. Table 8 shows other common intervals together with 
the referred observation from UIUC test [30]. 

According to Table 8, under the Reynolds number of 100,000, the 
referred maximum lift-to-drag ratio of NACA 643–218 is equal to 41.47 
If the designer purely adopted the point estimate of 39.45, there would 
be a downward bias of 2.02. Nevertheless, by gradually considering 
different levels of confidence interval from low to high, one could take 

Fig. 13. Comparison of the final EVS using target functions with different.λσ  

Fig. 14. Comparison of the final mean std. using target functions with different.λσ  

Fig. 15. Normalized outline of NACA 643–218 for case study [30].  
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precautions against such risk in advance. In this case, the margin error 
2.03 of 98.75% confidence has successfully covered such bias, offering a 
conservative but also accurate interval prediction [42]. 

Further in applications for real wind turbine system, the above in-
formation could be helpful in its early design stage, such as in deter-
mining the range of designed tip speed ratio and consequently, the 
specified rotational speed of the rotor [2] for the target wind turbine that 
adopts such airfoil as its blade shape. Moreover, by choosing desired 
confidence level that takes potential risks into consideration based on 
the historical data, the corresponding interval prediction can addition-
ally offer a more conservative and accurate reference for the designed 
working range. 

5. Conclusion and future work 

In this paper, an original machine learning framework for airfoil 
maximum lift-to-drag ratio prediction is proposed. When applied to an 
airfoil with specific geometry, the model was able to provide accurate 
prediction results from both point and interval perspectives under a 
turbulent Reynolds number of 100,000. 

The framework establishment process, numerical measurements, 
multi-aspect comparison and the parameter sensitivity analysis were 
enough to prove that the model here presented is better developed than 
parallel models. Based on this, several conclusions can be summarized. 

First, the proposed model has originally synthesized the geometric 
features types extracted from previous studies to form a hybrid potential 
feature pool. An original hybrid feature selection was then conducted to 
dig the sub feature set of the hybrid pool for regression. Second, the 
proposed framework was trained and tested on the widely used UIUC 
dataset [30], known for providing a high-precision prediction for both 
assessments: point and interval ones. For the group of airfoils that un-
derwent testing, the explained variance score of the current model 
reached 0.941 and the mean standard deviation was only 0.895, which 
are considered impressive results. 

Thirdly, the feasibility of this work and its easy-to-implement fea-
tures were confirmed through a case study based on a single airfoil. All 
of the potential applications of the novel model in this specific engi-
neering field usage have been clearly presented. At the same time, the 
unique probabilistic prediction obtained from the GPR results has also 
been annotated in detail to illustrate its value for engineering reference. 

This work leaves room for other scholars in the field to make im-
provements and new related discoveries. The following aspects require 
content can be further investigation: (1).The airfoil dataset could be 
further updated or expanded to make the new model more sophisticated; 
(2). Different Reynolds numbers may be considered and their influence 
on prediction performance further analyzed; (3). More features of the 
airfoil could be added into the hybrid feature pool; (4). The SFS-GPR 
procedure could also be improved to become more flexible when con-
ducting the process of feature selection, so it does not strictly rely on the 
impotence rank provided by Random Forest algorithm. 
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