Aerodynamic performance assessment of φ-type vertical axis wind turbine under pitch motion

摘要

The floating vertical axis wind turbine (VAWT) is considered as a competitive device in the utilization of offshore wind energy. However, the platform pitch motion would affect its aerodynamic behavior. In this paper, the aerodynamic performance of a floating φ-type VAWT under pitch motion is investigated by using the Improved Delayed Detached Eddy Simulation SST k−ω turbulence model. After verifying the feasibility of the numerical model, the effects of pitch motion amplitude and period on the aerodynamic characteristics were evaluated, and the impacts of these observations were elucidated. The results showed that the averaged net power coefficient increment of about 1.5%–15% could be obtained under platform pitch motions, and the fluctuation of aerodynamic loads was found to increase. Besides, the pitch motion pattern could be regarded as the combination of surge and heave motions, which explained the similarity of their effects on the wind turbine aerodynamics. Furthermore, it was found that the frequency of the peak torque coefficient would change under different periods of pitch motion, which should be noticed in the design of floating wind turbine. Finally, it was concluded that the current study provided additional information about the effect of pitch motion on wind turbine aerodynamics.

出版物
Energy
Yaoran Chen
Yaoran Chen
Researcher of Artificial Intelligence

我所研究的专业领域涉及计算流体动力学(Computational Fluid Dynamics)、人工智能(Artificial Intelligence)以及它们的交叉方向。目前,我的研究以海洋为应用背景,包含海洋环境信息、海上新能源、海上无人系统等。