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A B S T R A C T   

Accurate short-term wind speed prediction is of great significance for early warning and regulation of wind 
farms. At present, the scale of wind speed time-history data is increasing, and its time resolution is also becoming 
higher. Traditional machine learning models cannot effectively capture and utilize nonlinear features from the 
large scaled dataset and this, not only increases the difficulty of model building, but also reduces the prediction 
accuracy. To overcome such challenges, a machine learning based framework involving data-mining method was 
proposed in this paper. To begin with, a powerful signal decomposition technique (ensemble empirical mode 
decomposition) was used to divide the original wind sequence into several intrinsic mode functions to form a 
potential feature set. Then, a more appropriate sub-feature set together with the corresponding machine learning 
model were automatically generated through an iteration process. Such process was constructed through a 
coupled algorithm using the binary coded searching method known as the genetic algorithm and the advanced 
recurrent neural network with long short term memory unit. The analytical results show that, when compared 
with the traditional mainstream models, the strategy of using the sequences provided by the signal decompo-
sition technology as the input features can significantly improve the prediction accuracy. On the other hand, 
faced with the high-dimensional feature set generated from the big data, the selected sub-feature set can not only 
perform a large dimension reduction, but also further improve the prediction accuracy up to 28.33% in terms of 
different kinds of evaluation criteria. Therefore, there is a potential application of the proposed method on more 
accurate short-term wind speed prediction under a considerable dataset of wind history.   

1. Introduction 

A conspicuous global energy pathway is defined as the transition 
from relying on fossil fuels to low-carbon and renewable sources [1]. 
Among them, the wind energy has undergone an impressive develop-
ment, with annually global capacity over 52 GW during the past five 
years [2]. Meanwhile, as a type of variable renewable energy (VRE), the 
time-dependent characteristics of wind flow have imposed technical 
challenges to its electrical power industry, including the difficulty in 
designing control strategy and the challenge of making efficient warning 
of extreme conditions for wind power system [3]. It can be said that a 
crucial step to overcome these challenges is to figure out the inlet wind 

information for the near future, but this requires further knowledge 
about short-term wind speed [4]. Different from the time interval of 
monitoring for structural wind engineering, usually larger than a half- 
day, the definition of “short-term” for wind power system is generally 
less than 1 h, even in real time [3]. Therefore, to this extent, a precise 
forecasting model of short-term wind speed is considered to be 
necessary. 

So far, the methodologies of wind speed prediction can be mainly 
classified into two categories (i) physical methods [5,6] and (ii) statis-
tical methods [7–9]. Most of the physical methods are numerical 
weather forecasting (NWP) [10], based on the local environmental in-
formation, for instance, temperature, humidity and geography. Because 
of the model’s complexity, especially with intricate topography [6], 
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Nomenclature 

Abbreviations 
ANFIS Adaptive Network-based Fuzzy Inference System 
ANN Artificial Neural Network 
AR Auto Regression 
AWNN Adaptive Wavelet Neural Network 
BPNN Back-propagation Neural Network 
CNN Convolutional Neural Network 
EA Evolutionary Strategy 
EEMD Ensemble Empirical Mode Decomposition 
ELM Extreme Learning Machine 
EMD Empirical Mode Decomposition 
ENN Extension Neural Network 
FT Fourier Transform 
GA Genetic Algorithm 
GRP Gaussian Process Regression 
GRU Gate Recurrent Unit 
HHT Hilbert-Huang Transform 
IMF Intrinsic Mode Function 
KFCM Kernel-based Fuzzy C-Means clustering 
LSTM Long Short Term Memory 
MSD Multi-Step Decomposition 
NWP Numerical Weather Forecasting 
PM Persistence Model 
PSO Particle Swarm Optimization 
RNN Recurrent Neural Network 
SSA Singular Spectrum Analysis 
SVM Support Vector Machine 
SVR Support Vector Machine for Regression 
SW Shared Weight 
VMD Variational Mode Decomposition 
VRE Variable Renewable Energy 
WIND Wind Integration National Dataset 

WT Wavelet Transform 

Symbols 
φ DNA set 
g Index of generation 
i Number of LSTM trail for fitness evaluation 
j Index of IMF 
k Number of start point of test set 
n Number of IMF 
t Time point 
M Population size 
T Total number of wind data points 
x Input matrix for LSTM 
y Output matrix for LSTM 
cj(t) IMF series through iteration 
f(t) Forget gate function for LSTM 
i(t) Input gate function for LSTM 
o(t) Output gate function for LSTM 
r(t) Residual series 
w(t) Gaussian white noise series 
σ(Â⋅) Standard deviation 
E(Â⋅) Expectation 
F(φ) Objective function 
P(φ) Probability to survive during selection 
X(t) Raw wind series 
X’(t) Noised wind series 
X̂(t) Predicted wind series 
MAE Mean absolute error 
RMSE Root mean square error 
MAPE Mean absolute percentage error 
PMAE Percentage improvements of MAE 
PRMSE Percentage improvements of RMSE 
PMAPE Percentage improvements of MAPE  

Table 1 
Comparison of recent machine learning models for short-term wind speed prediction.  

Machine learning based short-term wind speed predicting models Publications Advantages Drawbacks 

Support Vector Machine models [13–16] High generalization, solid 
mathematical foundation 

Considerable computational 
consumption for large scaled 
wind history 

Fuzzy theory models [17–19] Applicable for systems that are 
difficult to be mathematically 
expressed 

Lack of systematic design, 
sometimes need highly complex 
rules 

Kalman Filter models [16,20] Do not need to store large history, 
low computational cost 

Need pre-knowledge of the 
target system, sensitive to noise 

Gaussian Regression Process [11,15,20] The prediction is probabilistic 
with confidence intervals 

Not sparse, low efficiency in case 
of high-dimension input space 

Extreme Learning Machine [21–24] Very fast to train the model, easy 
implementation for high- 
dimension space problem 

Controversy on idea of the 
methodology and feasibility for 
real application 

Artificial neural 
network based 
models 

Back-propagation Neural Network based model [25,26] Basic model of ANN, 
straightforward to establish the 
model 

Difficult to train a large number 
of parameters 

Convolutional Neural Network based model [12,27,28] Suitable to train high-dimension 
inputs especially with spacial 
relations 

Complex to build the model for 
time series problem such as wind 
speed prediction 

Recurrent Neural 
Network based 
models 

General Recurrent Neural Network [13,29,30] Suitable to create dependencies 
between time steps 

Convergence problems on 
constructing far-step time 
dependencies 

Advanced 
Recurrent Neural 
Network 

Gate 
Recurrent 
Unit 

[31,32] Use “gates” to handle far-step time 
dependencies problems in general 
RNN 

Lower performance than LSTM 
when facing large data 

Long-Short 
Term Memory 

[9,11,12,14,17,24,25] More parameters to be trained 
than GRU  
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such methods are generally time-consuming, so it is challenging to make 
the real-time prediction. In contrast, the statistical approaches are more 
suitable for short-term wind speed prediction, since they are based on 
historical information in the form of time-series data [9]. The most 
typical statistical models include autoregressive model (AR) and its 
variants —autoregressive moving average (ARMA) and autoregressive 
integrated moving average (ARIMA). Such variants have been widely 
used and adopted as the benchmarks by former researches [9,11,12]. 
However, when facing data series with high nonlinearity, the poor 
expansibility of these traditional methods will hinder it from a better 
prediction performance. 

In recent years, machine learning models have been increasingly 
used in the field of short-term wind speed prediction. These approaches 
are applicable to different scenarios and have greatly improved the 
prediction accuracy compared with the traditional AR-type models. As 
shown in Table 1, the most widely used models include Support Vector 
Machine (SVM), fuzzy theory model, Kalman filter model, Gaussian 
Regression Process (GRP), Extreme Learning Machine (ELM) and 
different types of Artificial Neural Networks (ANN). Among them, the 
ANN based models seem to be the best choice as they can directly learn 
knowledge from the training data (wind history) without needing any 
priori together with a higher adaptability to real-field applications [33]. 
The most basic ANN models are back-propagation neural networks 
(BPNN), where layers are simply stacked in-depth. This setup may result 
in an excessive training cost when the network becomes deeper. 
Addressed to this, in Chen et al. (2020) [25], a parameter optimization 
process is added into the structure of BPNN to help improving the 
training efficiency. However, another essential drawback for BPNN is 
that it doesn’t present any links between neurons within the same layer. 
This means the model cannot make full use of the information provided 
by input time steps, which hinders it from a further better prediction 
performance for time series problems. 

Different from BPNN, another alternative of ANN models, the con-
volutional neural networks (CNN), are good at finding local co-relations. 
Shivam et al. (2020) [28] conducted the prediction process by feeding 
the one-dimensional training series into a residual augmented causal 
CNN network, showing a noticeable outperformance to naive models. 
Nevertheless, the structure of such CNN based model seems too complex 
for the current problem, where more than 20 different layers and over 
30,000 un-trained parameters are used, not to mention the number of 
hyper-parameters. Hence, so far, Recurrent Neural Networks (RNN) is 
considered the most proper designing of ANN for sequence modeling 
problems. In RNN, dependencies between each input step can be 
recursively constructed, and this fits well with [29,13,34] the time 
continuity for wind speed prediction. However, traditional RNN models 
may encounter convergence problems such as gradient explosion or 
gradient vanishing [35] when finding far-step dependencies. To over-
come this issue, “gate control” technologies were employed in RNN 
models, for instance, gate recurrent unit (GRU) [31,32] or long short- 
term memory (LSTM) [11,12] algorithms. According to existing litera-
tures [25,36,37], the performance of GRU and LSTM are comparable. 
However, LSTM based models appear to be more reliable since it has 
undergone more validations based on different wind datasets from 
various regions around the world [9,12,24], all showing satisfactory 
prediction outcomes. 

In addition to machine learning model, the appropriate pre- 
processing technique on wind series is also of great importance to the 
model performance, and it has a crucial step known as the data-mining. 
The most commonly used data processing method is signal decomposi-
tion, including Singular Spectrum Analysis (SSA) [9,19,24], Variational 
Mode Decomposition (VMD) [9,24,31], Wavelet Transform (WT) 
[18,27,38] and Ensemble Empirical Mode Decomposition (EEMD) 
[18,23,39]. From a number of previous researches [18,27,38], it was 
confirmed that the WT based models have achieved satisfied outcomes, 
on account of its excellent localization characteristics in both time and 
frequency domains. However, it is not clear how to select the specific 

wavelet function for an arbitrary dataset [40]. Similar embarrassment is 
encountered when implementing VMD based methods [9,24,31], where 
the number of modes is a priori value to be determined at the very 
beginning, yet posting a significant influence on the decomposition re-
sults. Considering the EEMD method shows its impressive superiority of 
automatic adjusting to any non-stationary time-series by introducing the 
intrinsic mode functions (IMF) [41], it could be the best choice when 
faced with such setback. Huang et al. (2019) [42] conducted the multi- 
step wind speed forecasting by summing all sub-predictions from LSTM 
models of every IMF resulting from the EEMD decomposition, and then 
rectified the summation through error correction strategy. Similar 
routine also appeared in Huang’s previous work [43], where he 
considered the predictions from both EEMD-LSTM and EEMD-GRP 
models as a weighted combination to determine the final prediction. 
In [44], Qin et al. (2019) added a fuzzy classification process between 
EEMD and LSTM modules, first categorizing IMF components into 
different groups, then conducting LSTM predictions separately for each 
group and finally aggregating all forecasts into ultimate results. These 
investigations have laid a solid foundation for the applications 
combining EEMD with LSTM learning models. 

Nevertheless, the issue is that, from the opposite side, it is not always 
beneficial when the number of sub-series is not defined in advance by 
using EEMD based models. The reason behind is that, nowadays, as the 
time resolution of the wind dataset becomes higher and the recording 
period gets longer, the scale of the dataset is expanding and the non- 
linearity and non-stability of the wind series are growing higher as a 
consequence. As a result of implementing EEMD method on such a 
largely scaled dataset, the number of sub-series (i.e. IMFs) will be 
considerably boosting at the same time. Therefore, there are at least two 
bottlenecks processes continue to follow the routines in aforementioned 
literatures [42–44]. 

To begin with, more IMF components would result in more untrained 
parameters, hence the total training cost would correspondingly in-
crease. Secondly, if the design idea of the model is to reconstruct the 
wind speed sequence using predicted sub-series employing machine 
learning methods, the prediction error of each component will eventu-
ally be accumulated to the final error. Consequently, when the number 
of IMF increases, the model accuracy will decrease in reverse. 

To overcome this issue and to further improve the prediction accu-
racy, a novel framework is proposed in this work, involving the signal 
decomposition tool (EEMD), a feature selection process (genetic algo-
rithm, GA) and the machine-learning model (LSTM) all together. Here, 
different from some previous studies in the field [42–44], the compo-
nents generated from EEMD method are no longer used for wind history 
reconstruction, but to compose a potential feature set for LSTM to learn 
from. Next, with the help of GA, such potential feature set will undergo a 
process of dimension reduction, producing a sub-collection that com-
prises hallmarks with more valuable information. As a result, the model 
can effectively counter with the increasing number of IMFs so as to 
successfully utilize the powerful EEMD method for short-term wind 
speed prediction under a large scaled dataset. 

Considering all the steps explanations above, the main contributions 
of this work are stated as follows:  

1. A novel structure of hybrid machine-learning framework combining 
EEMD, GA and LSTM for short-term wind speed prediction is pro-
posed to face the background of the increasing scale of dataset. 
Different from previous researches [42–44], instead of following the 
design of “decomposition—prediction—reconstruction”, the pro-
posed framework is trying to provide a more concise and valuable 
feature set out of a number of potential features that are generated by 
signal decomposition method for the given wind history. 

2. The algorithm here proposed is fully automatic and is totally poste-
riori. Compared with former studies, this framework does not require 
any predetermined knowledge to the target system (e.g. the noise 
assessment for Kalman methods [16,20], logical rules for fuzzy based 

Y. Chen et al.                                                                                                                                                                                                                                    



Energy Conversion and Management 227 (2021) 113559

4

models [17,19] and wavelet functions for WT based models 
[18,27,38]. Here, the whole model is established only on the recor-
ded wind dataset itself. When it comes to the feature selection pro-
cess, it is also done through a heuristic iteration, trying to establish 
an entire end-to-end machine-learning model.  

3. A rational validation for the framework is established based on the 
real world case, with more than 100,000 records of wind farm in-
formation collected throughout a year at a time-step of every 5 min. 
In previous examinations, dataset were limited to thousands of data 
points [24,31] and here, a largely scaled dataset is intentionally 
adopted to validate the feasibility of the model regarding the current 
issue. This change in the process is also suggested to avoid common 
training problems (e.g. over fitting) at the same time.  

4. In this work, a comparative study of the results is comprehensively 
conducted from a progressive multi-level. Different from former in-
vestigations, where comparisons with other models are conducted 
altogether [42,43], this research was conducted based on progressive 
aspects. First, the comparison is performed between the current 
model and the naive machine learning models. Then, it changes to an 
analysis among models that involve EEMD method. Finally, there is 
an additional contrast made between the current model and the 
EEMD-LSTM model but with a different feature set. Through these 
step-up comparisons, the superiority of signal decomposition 
(EEMD), machine learning model (LSTM) and feature selection 
process (GA) could all be tested. 

The following parts of this paper are constructed as below: the 
methodology of the wind speed prediction framework will be stated in 
Section 2; an introduction of the dataset will be presented in Section 3; 
the results of the numerical experiment as well as the comparison with 
parallel models will be discussed in Section 4; finally, Section 5 will 
summarize solid conclusions and raise the future plan. 

2. Dataset 

A statistical exploration of the dataset is presented in this section. As 
shown in Fig. 1, the wind speed series being used is a one-year extraction 
of the WIND Toolkit [45], which is one of the largest publicly available 
wind datasets that realistically reflected the historical wind character-
istics from more than 126,000 wind power sites across the United States 
[45]. 

The current dataset recorded the annual wind speed variation of an 
in-land wind farm in the northern-eastern region of Indiana, US, 2007. 
Its statistical characteristics are shown in Table 2, where the minimum 
wind speed throughout the year is 0.054 m/s and the maximum wind 
speed value is up to 22.593 m/s. The difference between the average 
wind speed (7.342 m/s) and the median value (7.184 m/s) is small, 
indicating that the current dataset generally has a fairly balanced 
distribution. 

There are two main reasons for adopting such dataset as the nu-
merical validation of the proposed framework: First, in contrast to other 
datasets [11,12,39], the temporal resolution of the current dataset is per 
5 min, hence the resultant forecasting model can meet the requirements 
with timely urgent background. Secondly, the scale of this dataset is 
considerably larger (over tenfold) than previous studies [31,41], hence 
the reliability the framework can be more robustly validated. 

Based on this dataset, the analytical study of short-term wind pre-
diction is performed on Python 3.6 platform with Keras packages [46]. 
Two servers are in parallel for computation, with details as below: 

Server 1: Intel(R) Core(TM) i7-7700 CPU@3.60 GHz, 3.60 GHz, 24 
GB RAM; 
Server 2: Intel(R) Core(TM) i7-7500 CPU@2.70 GHz, 2.90 GHz, 16 
GB RAM. 

3. Methodology 

In this section, the framework together with the approaches that 
used for short-term wind speed prediction are presented. As the flow-
chart shown in Fig. 2, the EEMD, GA and LSTM algorithms are combined 
together, building the architecture of the current framework. The 
following sections will give an explanation of how these sub-models 
respectively works. 

3.1. Ensemble empirical mode decomposition 

In 1998, Huang et al. [47] initially proposed the Empirical Mode 
Decomposition (EMD) that based on Hilbert-Huang Transform (HHT). 
This method has been successfully employed throughout decades 
because of the following advantages: 1. It is suitable for both non-linear 
and non-stable signals; 2. Unlike WT or FT that needs pre-determined 
basis, HHT is fully adaptive by originally introducing the intrinsic 
mode functions (IMFs). However, some of these IMFs may contain os-
cillations of dramatically different scales, which is known as the “mode 
mixing”. This drawback will not only make these IMFs lose their phys-
ical meaning, but also render the EMD algorithm less robust, being 
sensitive to tiny perturbation of the dataset [48]. To overcome this 
problem, in 2009, the Ensemble Empirical Mode Decomposition (EEMD) 
was subsequently proposed [48]. By adding Gaussian white noise into 
the raw series, EEMD can attribute signals with different time scales 
automatically to the appropriate reference scales. As a result, the cor-
relation between resultant IMFs and the raw series is largely improved 
[48]. The routine of EEMD is presented as follows [48]:  

1 Adding Gaussian white noise signal w(t) into the target series X(t) to 
form a new signal X’(t) [48]; 

2 Decompose X’(t) using EMD method. Obtain IMFs cj(t) and the re-
sidual rn(t) [48];  

3 Repeat the above steps. Each time, different white noise is added into 
the same raw series [48];  

4 Since the mean value of Gaussian white noise is equal to zero, the 
grand average over all corresponding IMFs will be the final de-
compositions IMFj(t) [48]: 

Fig. 1. The original wind speed history from WIND Toolkit [24].  

Table 2 
The statistical information of original wind speed data.  

Number 
of points 

Time 
step 
(min) 

Mean 
(m/s) 

Median 
(m/s) 

Max 
(m/s) 

Min 
(m/s) 

Standard 
Deviation 
(m/s) 

105,121 5  7.342  7.184  22.593  0.054  3.460  
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X’(t) = X(t)+w(t) (1)  
X’(t) =

∑n

j=1
cj(t)+ rn(t) (2) 

Fig. 2. Flowchart of the proposed approach combining EEMD, GA and LSTM.  

Fig. 3. All 17 intrinsic mode functions of the current wind speed dataset after EEMD processing.  
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Fig. 3. (continued). 
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X’ i
(t) = X(t)+wi(t) =

∑n

j=1
cj

i(t) + rn
i(t) (3)  

IMFj(t) =
1
N

∑N

i=1
cj

i(t) (4)  

where i denotes the current number of trail;j denotes the number of each 
IMF;n is the total IMF number;N is the max number of iteration (i.e. the 
ensemble size). 

Resolved by above process, in this work, the final decomposed series 
of current dataset are shown in Fig. 3, including 17 IMFs in total. As for 
the current 100,000-point series, this number of IMFs agrees well with 
Wu’s prediction of log2T (T is the total number of data points) [48]. 

3.2. Binary coded genetic algorithm 

Wrapper is an important aspect in feature-selection engineering and 
deep learning researches. In this work, to improve the performance of 
the current wind-speed predictor, the binary coded GA is used to find the 
appropriate IMFs as the features set for LSTM training. 

3.2.1. Binary coding 
As shown in Fig. 4, all 17 IMFs through EEMD are listed in sequence 

(from IMF1 to IMF17), followed by a same-sized list comprising only 
0 and 1 (binary list). The final selected list of IMFs is then constructed 
through elemental multiplication between these two lists. In this way, it 
can be controlled whether each IMF should be discarded or not. If an 
IMF is needed, the element under the corresponding index of binary list 
is set to be 1; otherwise, it is set to be 0. As a definition, such binary list, 

Fig. 3. (continued). 

Fig. 4. Binary coding of GA for feature selection.  
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denoted byφ, is called as the DNA set. 

3.2.2. Initial trails 
An appropriate initial condition is important for searching algo-

rithms like GA, because it can not only provide potential trails from the 
very beginning but also globally distribute the searching points. Based 
on such two considerations, in this work, the initial population is 
comprised of binary sets as follows:  

1. All elements are set to be one.  
2. All elements are set to be zero.  
3. The first-half elements are set to be one and the second-half elements 

are set to be zero. 
4. The first-half elements are set to be zero and the second-half ele-

ments are set to be one. 
5. The elements whose corresponding IMFs have higher Pearson cor-

relation with raw sequence are set to be one and others zero. 
6. The elements whose corresponding IMFs have higher Pearson cor-

relation with raw sequence are set to be zero and others one.  
7. Random binary sets obeying normal distribution. 

where given a pair of target series(X, Y), the Pearson correlation is 
defined as [23]: 

ρX,Y =
E((X − E(X))(Y − E(Y)))

σXσY
. (5)  

where X in this work is the raw dataset and Y represents the IMF; E(⋅)and 
σ(⋅) denote the expectation and standard deviation. 

3.2.3. Fitness 
The objective function of this work is defined as: 

F(φ) =
1

min
(
MAE(φ)1, MAE(φ)2, …, MAE(φ)i

), (6)  

where MAE(φ)i is the mean absolute error between the prediction and 
observation on test set from ith trail of the LSTM model using φ as the 
binary set for feature selection. 

The reason for searching minimal from several parallel trails is to 
mitigate the effects of random initialization of weights and different 
hyper-parameters while processing the LSTM training, which may lead 
to unexpected local extreme points despite using the same model 
structure. A definition of mean absolute error (MAE) can be referred in 
the Result section. 

3.2.4. Evolutionary procedure 
Inspired by the natural law of “survival of the fittest”, the evolu-

tionary procedure of GA includes: selection, crossover and mutation. An 
introduction of the main process is described in the following sections. 

3.2.4.1. Selection. The selection process can be classified under two 
different conditions. First, the best individual of a generation will 
maintain itself and directly pass this filter. Besides, other individual who 
has a higher fitness will possess a higher probability to join in the next 
generation. In this work, such probability is given by the following 
expression: 

P
(
φg,k

)
=

F
(
φg,k

)2

∑M
m=1F

(
φg,m

)2. (7)  

whereφg,k is thekth individual in gth generation; M is the number of in-
dividual in one generation (i.e. population size). 

It should be noticed that Formula (7) is not a pure process of elimi-
nation. It not only provides a higher chance for potential individuals, but 
also allows individuals who have low fitness to enter into the next 
generation but with comparatively lower probabilities. This is beneficial 

for maintaining the population diversity and increasing the algorithm 
robustness. 

3.2.4.2. Crossover. After selection, each DNA candidates will have a 
probability (i.e. crossover rate) to recombine with another individual 
from the same generation. The child individual will inherit the DNA 
information from these two parent sets, with half of its binary code from 
one parent and the rest from the other. 

Inspired by “the law of independent assortment” [49], as for each 
iteration in crossover, the parent individuals and the cross-points are 
independently and randomly selected. In another word, among the 
selected population group, each candidate and every DNA digit has the 
same chance to participate in the crossover process. Hence, in this part, 
there is no limitation for the population diversity. 

3.2.4.3. Mutation. To mitigate the phenomenon of pre-mature and to 
further enlarge the searching range, a mutation process is also appended 
after the crossover. Should one element in DNA set be mutated, it will 
change from 0 to 1 or from 1 to 0. However, it is not necessary to conduct 
this process on all elements of DNA sets each time, which may cause the 
convergence problem and increase the computational time. Therefore, 
another probability, known as the mutation rate, is also considered in 
this work. 

3.3. Long-short term memory neural network 

The LSTM neural network is an improved version of traditional RNN. 
It is more robust in dealing problems with both short-term and long-term 
dependencies. The most innovative contribution of LSTM is the proposal 
of three gates to control its memory of historical information, including: 
forget gate, input gate and output gate [35]. Assumed that input series 
x = (x1, x2,⋯xt,⋯xT) and the output seriesy = (y1, y2,⋯yt,⋯yT) (the 
subscript denotes the time step), the procedure of calculation shown in 
Fig. 5 is as follows [35]: 

f t = sigmoid
(
Wf∙[ht− 1, xt] + bf

)
(8)  

it = sigmoid(Wi∙[ht− 1, xt] + bi) (9)  

C
t
= tanh(WC∙[ht− 1, xt] + bC) (10)  

ot = sigmoid(Wo∙[ht− 1, xt] + bo) (11)  

Ct = f t*Ct− 1 + it*C
t

(12)  

ht = ot*softsign(Ct) (13)  

yt = sigmoid
(
Wy∙ht + by

)
(14)  

wheref t, it andot represent the forget gate, input gate and output gate. 
The definitions of activation functions can be found in Ref. [46]. 

4. Results and discussion 

Regarding to the proposed EEMD-GA-LSTM model, a case study on 
the abovementioned dataset is performed. In this work, the past half- 
hour wind speed information is used as the raw input to forecast the 
wind speed in the next 5 min. The sub-sections will be constructed as 
follows: First, the way of training/test set division and the criteria for 
performance evaluation will be presented. Next, the output of the 
feature selection from GA process will be illustrated. Finally, the per-
formance of the proposed model will be evaluated through comparative 
study with different models. 
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4.1. Performance criteria 

The raw dataset is divided into two parts: the training set and the test 
set. Since this is time series prediction problem, to avoid information 
leakage, the shuffle technique is not used. In this work, the first 60% of 
the dataset is selected as the training set and the rest 40% is the test set. 

Given X = (X1,X2,⋯Xk,⋯XT) as the observed raw wind speed his-
tory and X̂ = (X̂1 , X̂2 ,⋯X̂k ,⋯X̂T ) as the predicted wind speed series, to 
evaluate the performance of the prediction from the proposed models, 
three criteria are adopted here to assess the loss in test set, which are 
mean absolute error (MAE), root mean square error (RMSE) and mean 
absolute percentage error (MAPE) [24]: 

MAE =
1

T − k + 1
∑T

i=k

⃒
⃒
⃒Xk − X̂ k

⃒
⃒
⃒ (15)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
T − k + 1

∑T

i=k

(

Xk − X̂ k

)2
√
√
√
√ (16)  

MAPE =
100

T − k + 1
*
∑T

i=k

⃒
⃒
⃒
⃒
⃒
⃒

Xk − X̂ k

Xk

⃒
⃒
⃒
⃒
⃒
⃒
, (17)  

where T is the number of total points;k is the number of point that the 
test set begin from. To compare the accuracy between models, the cor-
responding percentage improvements are expressed as below [39]: 

PMAE =
|MAE1 − MAE2|

MAE1
(18)  

PRMSE =
|RMSE1 − RMSE2|

RMSE1
(19)  

PMAPE =
|MAPE1 − MAPE2|

MAPE1
(20)  

4.2. Results of feature selection 

To balance the searching range and the computational cost, the 
population size of GA in this work is set to be 32. As shown in Fig. 6, the 
convergence lines of the mean (Equation (6)) and the best finesses 
among population are plotted below: 

It can be referred from Fig. 6, the averaged fitness was continuously 
climbing in the first 15 generations and slowly converged afterwards, 
despite of the little oscillation. The best fitness gradually increased in the 
first 5 generations but nearly unchanged afterwards, showing that the 
potential selected feature set had been found in an early stage. Although 

Fig. 5. Architectural of LSTM network containing three gates.  

Fig. 6. Changes of mean and best fitness through generations.  
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in this stage, the averaged fitness had not converged to the best fitness, 
an early-stop can be implemented since the change of best fitness is 
evidently foreseen to keep flat. The fitness of the final best individual 
was 17.534, as the reciprocal, indicating its MAE was 0.057 m/s. The 
corresponding DNA set is as below: 

[1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0]

It can be found that, only 5 IMFs are finally selected as the feature 
set. Compared with the unselected 17 IMFs in total, it has dropped more 
than 2/3 sub-series fed into the LSTM model, therefore the model is 
becoming significantly concise. 

4.3. Performance assessment through comparison 

In this section, the discussion will be presented in two parts. In the 
first part, several mainstream models will be used for the comparative 
analysis. In the second part, an evaluation of the selected feature will be 
demonstrated, where the performance of the current EEMD-GA-LSTM 
model will be compared with that of the pure LSTM model as well as 
the EEMD-LSTM model whose feature set comprises all IMFs. 

4.3.1. Comparative study with parallel models 
The performance of the proposed model is analyzed through 

comparative study with the actual data together with the results from 
several benchmarks, including: Persistence model, ARIMR, BPNN, ELM, 
RNN and GRU models. These individual models will be assessed twice: 
without EEMD or with EEMD for pre-processing. 

To begin with, the proposed model is compared with a set of non- 
EEMD models. As shown in Fig. 7, the prediction results on a part of 
test set adopting different models are plotted together with the actual 

wind history, followed by a 25-min zoom-in graph as a closer look to 
distinguish the difference in detail. As it can be seen from the figure, 
compared with the real series, major of results from naive benchmarks 
are right-shifted, where the most representative model is the PM that 
purely adopted the record in one time step former as the prediction. 
However, for the proposed model, the predicted curve (black) were 
intertwining with the real history (red) up and down, without presenting 
an evident phase difference. To quantificationally assess the prediction 
accuracy, three performance criteria of these models, namely MAE, 
RMSE and MAPE, are listed in Table 3. As it can be found, the prediction 
bias of conventional models (i.e. PM and ARIMR) is inferior to NN 
models while RNN based models (i.e. RNN and GRU) are better than 
naive NN models (i.e. ELM and BPNN). Moreover, compared to any 
other model, the performance of the proposed model is largely 
improved, where the MAE, RMSE and MAPE of the current model are 
0.0570 m/s, 0.1337 m/s and 1.0622%, respectively. The percentages of 
improvements in terms ofPMAE,PRMSE and PMAPE are shown in Table 4, 
with an overall enhancement of 56.23% can be observed throughout all 
entries. To illustrate the difference in a more intuitive way, the corre-
sponding bar graphs of the tables are shown in Fig. 8 (MAE and RMSE) 
and Fig. 9 (MAPE). 

Next, the EEMD method is added as a data-processing technique to 
the above benchmark models (excluding conventional statistical 
models: PM and ARIMR). A graphical comparison of the output is shown 
in Fig. 10, where all predicted curves generally replicated the trend of 
the real data, but to different degrees. Among them, the curve for EEMD- 
ELM based model seems to have the minimal non-linearity and the 
poorest performance, mainly because of the excessive simplicity of the 
ELM model structure. Compared with other curves, the current model 
showed a better prediction especially in some of the local extreme values 

Fig. 7. Comparison forecasted values with non-EEMD benchmarks: (a). 200-min portion extracted from test set; (b). closer 25-min zoom-in series.  
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(such as the local minimums in Fig. 10(b)), reflecting a general superi-
ority in terms of the different evaluation matrix as shown in Tables 5 and 
6. An intuitive comparison is also made through chart graphs in Figs. 11 
and 12, showing a noticeable improvement that the overall RMSE for the 
benchmarks decreased from nearly 0.3 to about 0.2 (Figs. 8 and 11 red 
bars), MAE changed from all over 0.1 to averagely less than 0.1 (Figs. 8 
and 11 blue bars) and MAPE dropped from approximately 2.5–2.0 
(Fig. 12). From another aspect, through the comparison between Table 3 
and Table 5, the prediction performance is greatly raised by nearly 30% 
after implementing the EEMD method, proving the feasibility of 
employing EEMD method for accuracy enhancement. 

The above evidences have successfully confirmed that the EEMD 
procedure can provide a useful feature set and promote the prediction 
accuracy. Nevertheless, the proposed model still outperform those 
EEMD-benchmarks by over 30 percent rates. To investigate the reason, 
an evaluation of the feature selection is discussed in next section. 

4.3.2. Evaluation of the selected feature 
Particularly, in this section, three LSTM models will be further 

compared as an evaluation of feature selection: pure LSTM model, 
EEMD-LSTM model with all features included and the proposed EEMD- 
GA-LSTM model. 

Fig. 13 shows the comparison of the representative training pro-
cesses of 200 epochs on three feature sets using identical LSTM struc-
ture, where the y-label (i.e. the loss function) is the MAE between 
prediction and actual data after Min-Max normalization. As it can be 
referred, the final training loss was decreasing stage by stage when 
EEMD and GA module were successively added, dropping from 0.00555 
for pure LSTM to 0.00333 for EEMD-LSTM and finally to 0.00252 when 
GA wrapper is involved. 

Fig. 14 shows the prediction results of three LSTM models on the test 

Table 3 
Comparison of accuracy between proposed models and non-EEMD benchmarks.   

Persistence ARIMR BPNN ELM RNN GRU Proposed model 

MAE (m/s)  0.1559  0.1372  0.1280  0.1274  0.1275  0.1202  0.0570 
RMSE (m/s)  0.2952  0.2849  0.2978  0.2915  0.3038  0.2722  0.1337 
MAPE (%)  2.9086  2.5929  2.7176  2.4340  2.3301  2.3099  1.0622  

Table 4 
Comparison of percentage performance of the proposed model (EEMD-GA- 
LSTM) over non-EEMD benchmarks.   

Persistence ARIMR BPNN ELM RNN GRU 

PMAE(%)   63.43  58.45  55.46  55.25  55.29  52.57 
PRMSE(%)   54.70  53.07  55.10  54.13  55.99  50.88 
PMAPE(%) 63.48  59.03  60.91  56.35  54.41  54.01  

Fig. 8. Bar graph comparison of MAE and RMSE values of present model with non-EEMD benchmarks.  

Fig. 9. Bar graph comparison of MPE values of present model with non-EEMD benchmarks.  
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set. As it can be clearly pointed, compared with the other two, there is 
relatively large error between the prediction of pure LSTM (blue line) 
and the observation (red line). On the other hand, from Fig. 14(b), the 
curve of the proposed model, EEMD-GA-LSTM curve (black) is obviously 
more sticking on the actual data than the EEM-LSTM curve (yellow). 
More statistical comparison is shown in Table 7, Figs. 15 and 16. Though 
the error of pure LSTM model is generally better than naive non-EEMD 
benchmarks in Table 3, it is also doubled from the proposed model. 
Similarly, for EEMD-LSTM model, in spite that the performance is 
generally improved compared with other EEMD-benchmarks in Table 5, 

there is also at least 20% difference away from the current outcome. 
In real applications, the short-term wind speed prediction from the 

proposed framework can be realized through a distributed system 
(Fig. 17), where one system is used to train the off-line models and the 
other is used for on-line predictions. For the largely scaled wind history, 
the influence of single upcoming data on EEMD spectrum can almost be 
negligible. Therefore, the on-line system can use the pre-trained models 
to make the timely prediction within a period of time. Meanwhile, 
receiving more and more records, the offline system can simultaneously 
update the model. As the number of data is remarkably increasing, the 
model will be transmit back into the online system for further 
applications. 

5. Conclusion 

In this paper, a hybrid machine-learning framework is proposed as a 
way to achieve short-term wind speed prediction under an extensive 
dataset of wind history. The model here suggested is composed of three 
main algorithms: EEMD, GA and LSTM. First, considering a large scaled 
wind history and adopting EEMD as the signal decomposition technique, 
it was possible to obtain a potential feature set comprising a bunch of 
inerratic sub-datasets, known as the intrinsic mode functions. Then, 
through an iterative process using the coupled GA-LSTM algorithm, the 
heuristically selected feature set and the well-tuned machine-learning 
model are synchronously established. While running the proposed 
framework, the workflow is fully automatic and no prior functions are 
necessary. This easiness in the process makes it suitable for end-to-end 
requirements in applications. 

Further on, the feasibility and effectiveness of the model were 
comprehensively validated through an analytic study. Based on various 

Fig. 10. Comparison forecasted values with EEMD benchmarks: (a). 200-min portion extracted from test set; (b). closer 25-min zoom-in series.  

Table 5 
Comparison of accuracy between proposed models and EEMD benchmarks.   

EEMD- 
BPNN 

EEMD- 
ELM 

EEMD- 
RNN 

EEMD- 
GRU 

Proposed 
model 

MAE (m/ 
s)  

0.0883  0.1118  0.0826  0.0895  0.0570 

RMSE (m/ 
s)  

0.2015  0.2012  0.2003  0.1919  0.1337 

MAPE (%)  2.2520  2.2537  1.5284  1.8666  1.0622  

Table 6 
Comparison of percentage performance of the proposed model (EEMD-GA- 
LSTM) over EEMD benchmarks.   

EEMD-BPNN EEMD-ELM EEMD-RNN EEMD-GRU 

PMAE(%)   35.44  49.01  30.99  36.31 
PRMSE(%)   33.64  33.54  33.25  30.32 
PMAPE(%) 52.83  52.86  30.50  43.09  

Y. Chen et al.                                                                                                                                                                                                                                    



Energy Conversion and Management 227 (2021) 113559

13

evaluation standards, including MAE, RMSE and MAPE, the proposed 
method shows its impressive superiority beyond the mainstream 
models. To begin with, compared with non-EEMD models, the predic-
tion accuracy of the current model is considerably improved by 56.25%, 
on average. Afterwards, in comparison with EEMD method connecting 

with other learning prototypes, there is also a noticeable enhancement 
of averagely 38.48% on prediction accuracy. In addition, the results 
from the same learning model with different feature sets are considered, 
and the proposed method is still believed to be more powerful from two 
points of view: First, thanks to the GA wrapper for feature selection, the 

Fig. 11. Bar graph comparison of MAE and RMSE values of present model with EEMD benchmarks.  

Fig. 12. Bar graph comparison of MPE values of present model with EEMD benchmarks.  

Fig. 13. The comparison of the training processes on LSTM, EEMD-LSTM and EEMD-GA-LSTM.  
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input dimension of the model is largely reduced to less than one third of 
the length of the original feature set, making it become more concise and 
robust to data perturbation. Moreover, in terms of the forecasting pre-
cision, it is also greatly optimized compared with the all-feature and 
non-feature models under all kinds of criteria of assessments, reaching 
51.95% and 28.33% of improvements, respectively. Hence, all three 
parts of the algorithm contribute to a higher performance of the model 
and its effectiveness for short-term wind speed prediction is therefore 
confirmed. 

In the future, there is still a gap to further improve and enrich the 
current study regarding some aspects: First of all, it is possible to 
investigate and compare different searching methods as the feature 
wrapper for the proposed framework, such as particle swarm 

Fig. 14. Comparison of predicted values among LSTM models: (a). 200-min portion extracted from test set; (b). closer 25-min zoom-in series.  

Table 7 
Comparison of accuracy between LSTM models.  

Criteria Models 

LSTM EEMD-LSTM EEMD-GA-LSTM 
(Proposed model) 

MAE (m/s)  0.1197  0.0793 0.0570 
RMSE (m/s)  0.2727  0.1723 0.1337 
MAPE (%)  2.2364  1.6207 1.0622 
PMAE(%)   52.38  28.12 / 
PRMSE(%)   50.97  22.40 / 
PMAPE(%) 52.50  34.46 /  

Fig. 15. Bar graph comparison of MAE and RMSE values of LSTM models.  
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optimization (PSO) method and evolutionary algorithm (EA). Secondly, 
there is a breach to add other potential attributes with physical defini-
tions (e.g. humidity, temperature and air pressure) into the feature set of 
the current framework and to discuss their influence on model perfor-
mance. Last but not least, it is meaningful to consider other large-scaled 
wind datasets from different wind farm regions and with different res-
olutions, aiming to validate the proposed model in a more global way. 
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