Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines

摘要

The vertical axis wind turbine (VAWT) is regarded as an important device to utilize the renewable offshore wind energy to supplement the existing power systems. Hence, the demand for higher wind energy conversion makes the research focus on the blade optimization of wind turbines. This paper attempts to propose a novel VAWT structure with V-shaped blade to improve the power outputs at moderate tip speed ratios. The feasibility of the Reynolds-Averaged Navier-Stokes SST turbulence model applied on the VAWT was verified against available experiments at first. Then a comprehensive investigation on the aerodynamic performance of such V-shaped VAWT was carried out using the SST k-model. The results indicated that the maximum enhancement in power coefficient obtained in the optimal V-shaped blade was about 24.1. In addition to the great improvement of the power efficiency, the V-shaped blade was proven to alleviate the damage caused by lateral loads to the wind turbine. Besides, the flow structures over the blade surface were studied to reveal the mechanism of dynamic stall with the reason of power increase explained. Moreover, it was found that the V-shaped blade could effectively suppress the flow separation and delay the dynamic stall in the middle of the blade, and the undesirable blade tip effect would not be more serious comparing to that of the conventional straight blade. It was finally concluded that the current work could be practically applied to the design and optimization of the VAWT blades.

出版物
Applied Energy
Yaoran Chen
Yaoran Chen
Researcher of Artificial Intelligence

我所研究的专业领域涉及计算流体动力学(Computational Fluid Dynamics)、人工智能(Artificial Intelligence)以及它们的交叉方向。目前,我的研究以海洋为应用背景,包含物理信息神经网络、海洋环境信息、海洋可再生能源等。