
AIP Advances 10, 015142 (2020); https://doi.org/10.1063/1.5129744 10, 015142

© 2020 Author(s).

Three-dimensional wake transition in the
flow over four square cylinders at low
Reynolds numbers
Cite as: AIP Advances 10, 015142 (2020); https://doi.org/10.1063/1.5129744
Submitted: 01 October 2019 • Accepted: 05 January 2020 • Published Online: 22 January 2020

Yuhang Zhang, Rui Wang, Yaoran Chen, et al.

ARTICLES YOU MAY BE INTERESTED IN

Dynamic response of a cable with triangular cross section subject to uniform flow at
Reynolds number 3900
Physics of Fluids 32, 045103 (2020); https://doi.org/10.1063/1.5144402

Turbulent wake suppression of circular cylinder flow by two small counter-rotating rods
Physics of Fluids 32, 115123 (2020); https://doi.org/10.1063/5.0023881

Transition to chaos in the wake of a circular cylinder near a moving wall at low Reynolds
numbers
Physics of Fluids 32, 091703 (2020); https://doi.org/10.1063/5.0022560

https://images.scitation.org/redirect.spark?MID=176720&plid=1953410&setID=378289&channelID=0&CID=715934&banID=520851898&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=f98bca0c9be1474702c2767161ccd7677b3a14d0&location=
https://doi.org/10.1063/1.5129744
https://doi.org/10.1063/1.5129744
https://aip.scitation.org/author/Zhang%2C+Yuhang
https://aip.scitation.org/author/Wang%2C+Rui
https://aip.scitation.org/author/Chen%2C+Yaoran
https://doi.org/10.1063/1.5129744
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5129744
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5129744&domain=aip.scitation.org&date_stamp=2020-01-22
https://aip.scitation.org/doi/10.1063/1.5144402
https://aip.scitation.org/doi/10.1063/1.5144402
https://doi.org/10.1063/1.5144402
https://aip.scitation.org/doi/10.1063/5.0023881
https://doi.org/10.1063/5.0023881
https://aip.scitation.org/doi/10.1063/5.0022560
https://aip.scitation.org/doi/10.1063/5.0022560
https://doi.org/10.1063/5.0022560


AIP Advances ARTICLE scitation.org/journal/adv

Three-dimensional wake transition in the flow
over four square cylinders at low Reynolds
numbers

Cite as: AIP Advances 10, 015142 (2020); doi: 10.1063/1.5129744
Submitted: 1 October 2019 • Accepted: 5 January 2020 •
Published Online: 22 January 2020

Yuhang Zhang,1 Rui Wang,1 Yaoran Chen,1 Yan Bao,1 Zhaolong Han,1,2,3,a) Dai Zhou,1,2,3,b) Huan Ping,1
Shixiao Fu,1,2,3 and Yongsheng Zhao1,3

AFFILIATIONS
1School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2Key Laboratory of Hydrodynamics of Ministry of Education, Minhang Campus, Shanghai 200240, People’s Republic of China
3State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

a)Author to whom correspondence should be addressed: han.arkey@sjtu.edu.cn
b)Electronic mail: zhoudai@sjtu.edu.cn

ABSTRACT
The three-dimensional characteristics of the flow past four square cylinders in an in-line square configuration, with five spacing ratios ranging
from 1.4 to 5, were studied in depth in this study. Direct numerical simulation of the spectral/hp element method was employed at Re
= 150 and 200. The onset and evolution of various unstable modes were expounded in detail by means of three-dimensional vortices, energy
curves, wake patterns, and force coefficients. At each spacing, the three-dimensional instability and the corresponding flow pattern were
comprehensively analyzed to illustrate transitional features. Except for the existence of unstable mode A and mode B when spacing was
considerably small and large, for most of the intermediate spacing ratios, the vortex structures were dominated by mode C instability, whose
flow patterns all appeared as anti-phase synchronization. Through the evolution of flow patterns over time, the three-dimensional effects were
already observed at a low Reynolds number of 150 because of the influence of the gap flow and the mutual interference of the wake. Under
the transitional spacing for Re = 200, multiple modes were interfering fiercely with each other and appeared as chaotic states. Compared with
other bluff body forms, the four square cylinders generated numerous discrepancies and new modal transitions in three-dimensional cases.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5129744., s

I. INTRODUCTION

Flow over bluff bodies has been widely studied due to its practi-
cal and scientific significance. The related wake flow comprises rich
complex physical phenomena, such as the separated shear layer, vor-
tex shedding, and three-dimensionalization. In order to understand
the intrinsic mechanism of fluid dynamics, numerous investigations
have been performed to study the onset and evolution of the three-
dimensionality of wake flow, experimentally,1,2 analytically,3 and
numerically.4

The three-dimensional wake transition of a circular cylinder
(CC) was first experimentally investigated by Williamson.2,5 He
identified two successive three-dimensional transitions: mode A,

where the first three-dimensional unstable mode was accompanied
by the generation of large-scale vortex (mode A∗), appearing at Re
≈ 180–194, which is characterized by the spanwise wavelength of
4D; and mode B, appearing at Re ≈ 230–260 with a spanwise wave-
length of about 0.8D. These results were confirmed by the numerical
work of Barkley and Henderson,3 who conducted a highly accurate
Floquet stability analysis to determine the critical Re values of modes
A and B. Using the same method, Robichaux et al.6 examined the
three-dimensional instabilities in the wake of a square cylinder. It
was found that the physical mechanism of the two fundamental
unstable modes for a square cylinder (SC) is generally consistent
with those for a circular cylinder. The discrepancy was that mode
A was observed to become unstable at a Reynolds number of 161,

AIP Advances 10, 015142 (2020); doi: 10.1063/1.5129744 10, 015142-1

© Author(s) 2020

https://scitation.org/journal/adv
https://doi.org/10.1063/1.5129744
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5129744
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5129744&domain=pdf&date_stamp=2020-January-22
https://doi.org/10.1063/1.5129744
https://orcid.org/0000-0001-8170-287X
https://orcid.org/0000-0002-6494-150X
mailto:han.arkey@sjtu.edu.cn
mailto:zhoudai@sjtu.edu.cn
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.5129744


AIP Advances ARTICLE scitation.org/journal/adv

with a critical spanwise wavelength of about 5D, while mode B was
observed to become unstable at a Reynolds number of 190, with
a critical spanwise wavelength of about 1.1D. In curves of neu-
tral stability, the wavelength corresponding to the critical Reynolds
number is the critical spanwise wavelength. They also detected an
intermediate-wavelength subharmonic mode (mode S), which was
actually found to be a quasiperiodic mode (mode QP) by Black-
burn and Lopez.7 Williamson2,5 explained that mode A is stemmed
from the elliptic instability of the near-wake vortex core, while the
hyperbolic instability of the braid shear layers is the main reason for
mode B.

Sub-harmonic mode C, with twice the shedding period of the
two-dimensional base flow, was first found by Zhang et al.,8 by using
a thin wire closed to a circular cylinder. It was revealed that the
mode C instability has a distinct structure from modes A and B.
Later, mode C was also observed in the wake of a ring9 and the
inclined square cylinder.10 Mode C results from the subharmonic
mechanism, as proposed by Sheard et al.11

As the bluff body system can present different profiles and
arrangements, the fluid mechanics of three-dimensional transition
may vary for different structural forms, for instance, in the wake
transitions of two circular cylinders in staggered12 or tandem13

arrangements. Compared with the circular cylinder, the geometrical
characteristics of the multiple square cylinders may make it have a
different transition process. Choi and Yang,14 and Choi et al.15 stud-
ied two square cylinders in tandem and side-by-side arrangements
via Floquet stability analysis. The main spanwise wavelength for
each pattern was presented. At the same time, the three-dimensional
instability modes corresponding to multiple flow patterns generated
under different gaps were summarized. In addition, there were new
flow characteristics as the number of square cylinders continuously
increased.

For four circular cylinders in square arrangement, related stud-
ies have become exceedingly abundant in recent years. Lam et al.16,17

experimentally investigated the flow over four circular cylinders in a
square configuration. It was concluded that the flow characteristics
can be divided into three direct flow patterns at different spacing
ratio intervals. The influences of different spacing on force coef-
ficients and pressure distribution at the critical Reynolds number
were revealed by Lama and Zou.18 The numerical simulation was
conducted to study the flow field characteristics shown by Lam
et al.,19 and it was found that the two-dimensional simulation results
were quite different from the experimental data under some specific
Reynolds numbers around four cylinders, and the three-dimensional
simulation could better fit the experimental data to reveal the piv-
otal role of the three-dimensional effects. Thereafter, Lam and Zou20

investigated the influences of spacing ratio (L/D) and aspect ratio
(H/D) on three-dimensional flow characteristics around four circu-
lar cylinders at a Reynolds number of 200, as well as the features
of force and pressure coefficients on the cylinders. Tong et al.21

have investigated the vortex shedding regime with Reynolds num-
ber as a variable and the hydrodynamic characteristics on four cir-
cular cylinders by fixed spacing. Furthermore, two different flow
incidence angles were adopted to study the wake characteristics.22

The above major contents in regard to the four circular cylinders
were mainly focusing on the hydrodynamic characteristics and wake
flow regimes. There was little research on the transition of unstable
modes.

Multi-cylinder groups are common in engineering practice. For
flow past side-by-side bluff body structure, the two shear layers will
interact with each other, which will generate a new wake mode. For
flow past structures in tandem arrangement, the vortex shedding
from the upstream bluff body impacts the downstream structure,
which will change the overall wake characteristics. The four-cylinder
structure satisfies both of the above arrangements. In the available
literature, the flow past four circular cylinders has been extensively
investigated, and many new wake characteristics have been found.
However, for four square cylinder configuration, considering that
the structure has sharp edges, it will have a huge impact on the sepa-
ration of the fluid and the shedding of the vortex. The offshore plat-
forms and building group in the actual engineering have the struc-
ture of square cylinders, and there is no investigation on this con-
figuration. The study on flow past four square cylinders is of great
significance. In order to fill this gap, the goal of the present paper is
to use the three-dimensional direct numerical simulations to inves-
tigate the three-dimensionalization of the wake, as well as the evolu-
tion of the three-dimensional instabilities for different geometrical
configurations.

This paper is organized as follows. In Sec. II, the physical mod-
els are described and the numerical methods utilized in the simula-
tions are demonstrated and validated. Then, the detailed numerical
results are presented and explained in Sec. III. Finally, Sec. IV con-
tains the key conclusions, summarizing the main findings of the
present study.

II. PHYSICAL MODEL AND NUMERICAL
METHODOLOGY
A. Physical model

Figure 1 illustrates a schematic of the geometrical configura-
tion in this work. Four identical square cylinders in an inline square
arrangement are considered, where SC is an abbreviation of square
cylinder and CC of circular cylinder in subsequent figures and tables.
The side length of the square cylinder is defined as D and the
center-to-center spacing of two square cylinders is defined as L. The
upstream and downstream boundaries are, respectively, located at
32D and 52D from the center of the four-square-cylinder system,
and the two lateral boundaries are located 32D from the center of
the four-square-cylinder system. Five different spacing ratios in the

FIG. 1. Schematic view of the flow past the four square cylinders.
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range from 1.4 to 5 are considered in this study, i.e., L/D = 1.4, 2.5,
3.5, 4, and 5. The Reynolds number is defined based on the free-
stream U∞ and the side length D, i.e., Re = U∞D/υ, where υ is
the kinematic viscosity. Two Reynolds numbers of 150 and 200 are
selected. The principal objective of this study is to explore how the
three-dimensionality of the wake develops as the spacing ratio and
the Reynolds number alter.

B. Numerical methodology
The three-dimensional Navier–Stokes equations for incom-

pressible viscous flow can be expressed in the vector form as

∂u
∂t
= −(u ⋅ ∇)u −∇p +

1
Re
∇2u, (1)

∇ ⋅ u = 0, (2)

where u = (u, v, w) is the velocity vector, t is the time, and p is
the pressure. The above equations are resolved by employing the
parallel Fourier spectral/hp element method23 embedded in open-
source code Nektar++ (Cantwell et al.24 and Xu et al.25), in which a
three-step time-splitting scheme is used, allowing primitive variables
to be processed independently in each time step.26,27 The spanwise
wavenumbers of the three-dimensional flow vortices can be obtained
by Fourier expansion. This solver has widely been validated and used
to investigate the flow over bluff bodies (Jiang et al.,28 Rocco and
Sherwin,29 Tong et al.,30 Wang et al.,31 and Yan et al.32). A precise
development of the flow field can be obtained by direct numerical
simulation.

Based on the assumption that the flow variable is uniform in
the spanwise direction, Fourier expansion is introduced into the flow
variables u and p in the z direction as

u(x, y, z, t) =
M−1

∑
m=0

um(x, y, t)eiβmz , p(x, y, z, t) =
M−1

∑
m=0

pm(x, y, t)eiβmz ,

(3)
where m is the Fourier mode index and M is the number of modes
in the Fourier expansion. Here, β = 2π/Lz , where Lz represents the

periodic length. When Eqs. (1) and (2) are applied in the Fourier
transformation, a series of uncoupled two-dimensional equations
are obtained for each mode,33

∂um
∂t

+ N̂(u)m = −∇̃pm + v∇̃2um, (4)

∇̃ ⋅ um = 0, (5)

where N̂(u)m is the Fourier mode of the convective term. The
Fourier transformation of nonlinear terms is applied to the phys-
ical space to eliminate the influences of convolution sums. The
differential operators in Eqs. (4) and (5) are defined as

∇̃ = ( ∂

∂x
,
∂

∂y
, iβm), ∇̃2 = ∂2

∂x2 +
∂2

∂y2 − β
2m2. (6)

Note that for the three-dimensional simulations, with the
homogeneous spanwise direction being treated using a Fourier
expansion in the discretization, only two-dimensional mesh is
required. An example of the two-dimensional meshes utilized in the
present study is shown in Fig. 2 for the case of L/D = 2.5. The bound-
ary conditions are specified as follows: at the inlet and the two lateral
boundaries, a uniform free-stream velocity (u = 1, v = 0) is specified;
at the outlet, the Neumann boundary conditions (∂u

∂n = 0, ∂v
∂n = 0)

are enforced; on the square cylinder surface, a no-slip condition (u
= 0, v = 0) is imposed; for pressure, a high-order Neumann condi-
tion is set at the inlet and lateral boundaries, while it is set to zero at
the outlet.26

C. Validation test
The three-dimensional flow over a single square cylinder with

a spanwise length of 8D is chosen to validate the numerical method
employed in the present study. The global quantities, such as the
mean drag coefficient CD, the root-mean-square (rms) lift coeffi-
cient C′L, and the Strouhal number St, calculated at three different
polynomial orders are provided in Table I. The results reported in
the available literature are also presented. The comparison in Table I

FIG. 2. Grid schematic for L/D = 2.5 with P = 8 in the x–y plane. (a) Cross-sectional view. (b) Zoom-in view near the four square cylinders in an in-line square arrangement.
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TABLE I. Comparisons of the mean drag coefficient, the root-mean-square lift
coefficient, and the Strouhal number for a square cylinder at Re = 150 and Re
= 300.

Re = 150 Re = 300

Case CD C′L St CD C′L St

Present(P = 6) 1.463 0.291 0.156 1.488 0.201 0.146
Present(P = 7) 1.453 0.284 0.156 1.487 0.207 0.146
Present(P = 8) 1.446 0.282 0.156 1.484 0.202 0.146
Sohankar et al.35 1.44 0.230 0.165 1.47 0.200 0.153
Doolan34 1.44 0.296 0.156 . . . . . . . . .
Yoon et al.36 . . . . . . . . . 1.43 0.204 0.146

TABLE II. Comparisons of the mean drag coefficient, the root-mean-square drag coef-
ficient, the root-mean-square lift coefficient, and the Strouhal number for SC1 of the
four square cylinders with L/D = 2.5 at Re = 200.

CD C′D C′L St

P = 6 1.615 0.0446 0.125 0.132
P = 7 1.596 0.0412 0.114 0.132
P = 8 1.585 0.0423 0.116 0.132
P = 9 1.577 0.0422 0.115 0.132

suggests that the present results are in good agreement with previous
studies.34–36

Furthermore, a resolution study for the physical model in ques-
tion is carried out by varying the polynomial order P. The spatial
resolution is controlled by varying the order P of the polynomial,
which is interpolated at the Gauss–Lobatto–Legendre quadrature
points. For the case of L/D = 2.5 and Re = 200, the wake develop-
ment is orderly and regular. The hydrodynamic coefficient is more
accurate, which makes the grid accuracy verification more reliable.
Therefore, the cases of L/D = 2.5 and Re = 200 are selected for the
grid independence analysis and the results for SC1 with four differ-
ent polynomial orders (P = 6, 7, 8, and 9) are presented in Table II.
It can be seen that for order P ≥ 8, the relative difference is less than
1%, indicating that the solution of meshes with P ≥ 8 is converged

and can correctly resolve the flow. Considering the computational
efficiency, P = 8 is used hereafter.

III. RESULTS
In this section, results of the three-dimensional flow over the

four-square-cylinder system are presented. It is found that the wake
vortex structure presents distinct features at different Re and spacing
ratios. The effects of different spacing ratios on wake dynamics and
the three-dimensional vortex structures are described in detail for
Reynolds numbers of 150 and 200, respectively. For the sake of con-
venience, each case considered in this section is expressed as “L/D
− Re,” such as 1.4–150, 2.5–200, etc.

The laminar to turbulent stage experienced a long transition
period, namely, wake transition, shear layer transition, and bound-
ary layer transition, and finally the flow developed into complete
turbulence. The three-dimensional unstable mode is generated from
the two-dimensional periodic laminar phase to the wake transition
phase. In this study, the three-dimensional development of wake is
still in the early stage of transition.

Note that the layout of the four square cylinders contains the
features of two square cylinders in both side-by-side and tandem
arrangements, either of which has its own unique flow topology.
When the spacing ratio is small, the structure manifests as a single
bluff body, but due to the strong nonlinear effect caused by the gap
flow, the three-dimensionality appears to be different from the sin-
gle square cylinder. As the spacing ratio increases, the interactions
between the upper and lower square cylinders are gradually weak-
ened, and the structure can be regarded as a double row arrangement
in side-by-side. The vortex streets produced by the upper and lower
rows usually appear as symmetrical layout. On account of the sharp
corners of the square cylinder, the fluid on the near wall of the bluff
body is very different in flow pattern from the surface of the cir-
cle cylinder. Hence, in this study, the flow separation of the fluid,
the resulting vortex shedding, and the oscillation of the wake vortex
have their distinct features.

A. Hydrodynamic forces
The variations of the mean drag coefficient CD and the root-

mean-square lift coefficient C′L at Re = 150 are shown in Fig. 3. The
results of an isolated square cylinder are also displayed as a compar-
ison. The determination of the two coefficient values is based on at

FIG. 3. (a) The line chart of mean drag
coefficient at Re = 150. (b) The line chart
of root-mean-square lift coefficient at Re
= 150.
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least 1000 non-dimensional time when the flow structure is relatively
stable. It can be seen that the CD values of the two upstream square
cylinders gradually approach the value of the single square cylinder
with the increasing spacing ratio. When the spacing ratio increases
from 3.5 to 4, the CD values of downstream SC3 and SC4 experi-
ence a sudden jump, which is attributed to the fact that the vortices
generated from the upstream cylinders are shed in the gap. This phe-
nomenon also leads to the rapid rises of C′L of the square cylinders
at the same L/D, as shown in Fig. 3(b). Note that the values of the
force coefficient for the symmetrically arranged upstream SC1 and
SC2 are exactly the same, as well as the downstream SC3 and SC4,
in the range of spacing ratios considered, with the exception of L/D
= 4.0. For L/D = 4.0, the force coefficient values of the downstream
two square cylinders show a larger difference than those of the
upstream cylinders. This difference indicates that the wake sym-
metry may be broken due to the vortex interactions, which will be
analyzed later.

Figures 4(a) and 4(b) show the mean drag coefficient CD and
the root-mean-square lift coefficient C′L at Re = 200 as a function of
L/D, respectively. The three-dimensional numerical results, reported
by Lam and Zou20 for the flow over four circular cylinders in an
in-line square configuration, are also presented in this figure. The
values of CD for the upstream SC1 and SC2 decrease slightly as
the spacing ratio increased, while the CD values of the downstream
SC3 and SC4 show fluctuations. In general, the values of CD for the
square cylinders are larger than their counterparts for the circular
cylinders, except that the values of the downstream SC3 and SC4 are
lower than those of the circular cylinder at a spacing ratio of L/D
= 2.5, indicating that the three-dimensionality at this spacing ratio
may be quite different from other spacing ratios, which will be pre-
sented in the following sections. Note that increasing L/D from 2.5
to 3.5 sees a rapid rise in CD of the downstream square cylinders, due
to the vortex shedding in the gap. This means that the occurrence of
vortex shedding in the gap is earlier in terms of the spacing ratio,
compared with that at Re = 150.

For the root-mean-square lift coefficient C′L shown in Fig. 4(b),
C′L for each square cylinder increases with increasing spacing ratio
until L/D = 4.0. A significant increase of C′L from L/D = 2.5 to 3.5
is also observed, which is consistent with that of CD presented in
Fig. 4(a). For L/D > 4.0, the values of C′L remain almost constant for

the upstream square cylinders, while the values of C′L decrease for
the downstream square cylinders. Even though the geometrical con-
figuration is symmetrically arranged, there still exist some deviations
between the upstream cylinders or the downstream cylinders, such
as C′L for SC3 and SC4 at L/D = 3.5, due to vortex interactions or the
competitions of multiple three-dimensional instabilities, which will
be elaborated later.

B. Unstable modal evolution analysis at Re = 150
In the three-dimensional direct numerical simulations, 32

Fourier modes are employed to capture the flow variations in the
spanwise direction. Calculations with 64 Fourier modes show vari-
ations of less than 1% in the hydrodynamic forces and no changes
in the observed wake structures, indicating that 32 Fourier modes
are enough to accurately capture the small-scale structures in the
wake of the configurations considered in the present study. For
all the three-dimensional simulations, a low-level white noise of
amplitude 10−5U∞ is added to the spanwise velocity component
at startup to accelerate the development of the three-dimensional
instabilities.

In order to quantitatively investigate the evolution of three-
dimensional flow, as well as modal interactions in the wake, the
kinetic energy is recorded over time, which is defined as follows:

Ek(t) =
1
2 ∫V

u2
kdV , (7)

where k is the spanwise wavenumber and V is the volume of the
computational domain. One positive and negative solid blue and red
iso-surface in the vortex is defined as one periodic vortex pair, cor-
responding to one wavenumber. As the flow evolves, the unstable
wavenumbers will experience an exponential growth stage to gain
dominant energies, while the stable wavenumbers will decay. The
case of 3.5–150 is chosen to illustrate how the kinetic energy is uti-
lized to analyze the modal evolutions and interactions, as shown in
Fig. 5.

It can be seen in Fig. 5 that the energy of each non-
zero spanwise wavenumber initially drops rapidly, and then the
unstable wavenumbers are observed to grow exponentially in the
linear regime (t ≤ 400). The exponential growth is eventually

FIG. 4. (a) The line chart of mean drag
coefficient comparing with earlier stud-
ies for four circular cylinders (marked as
CC) at Re = 200. (b) The line chart of
root-mean-square lift coefficient compar-
ing with earlier studies for four circular
cylinders at Re = 200.
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FIG. 5. Energy curves time series of spanwise wavenumbers for Re = 150 with a spacing of 3.5. (a) The bold and colored lines express energies of the dominant wavenumber
5 and its harmonics. (b) expresses energies of the dominant wavenumber 1 and its harmonics. (c) expresses energies of the dominant wavenumber 2 and its harmonics.

counter-balanced by the non-linear effects, rendering the flow sat-
urated with a dominant spanwise wavenumber of K = 5. Note that
the energy in the wavenumber of K = 5 is steadily periodic after sat-
uration, indicating that the three-dimensional structure has stopped
its further deformation. The harmonics of the dominant wavenum-
ber (K = 10, 15, 20, 25, and 30) with much lower energies are also
displayed in Fig. 5(a). Energies in the non-harmonic wavenumbers
are observed to decay at different rates, part of which can be classi-
fied into two groups (k = 2, 7, 12, 17, 22, and 27 and k = 1, 6, 11,
16, 21, and 26). The wavenumbers within each group share similar
energy oscillations over time, and the wavenumber interval in each
group is the dominant wavenumber of the highest energy, as can be
seen in Figs. 5(b) and 5(c), respectively.

In this study, the time evolutions of energies in the dominant
spanwise wavenumbers are mainly focused, as well as the corre-
sponding wake structures, to identify the fundamental mode and
illustrate the wake transition process. Transition refers to the mutual
conversion between three-dimensional unstable modes in the early
stage of wake development.

1. L/D = 1.4

In the case of 1.4–150, the energy time series of wavenumbers
is shown in Fig. 6(a). After a period of development, the interference
of nonlinear effects is more prominent. The main form of expression
is the interaction and merging between the vortices, which will pro-
mote the occurrence of smaller wavenumber structures. At the same
time, small wavenumber Fourier modes compete with each other to
obtain energy in the course of a long time.

The trend at the beginning of the energy also shows a rapid
decline and then rise in an exponential rate, with the energy value
peaking at around t = 200. It is worth noting that before vortex-
shedding the three-dimensional effect begins to generate [Fig. 6(b)].
As the vortex shedding, the tongue-like vortex gradually trans-
forms into rib-like vortex. The physical mechanism of the transition
to three-dimensionality in this stage is revealed and explained by
Agbaglah and Mavriplis.37

Subsequently, the curves of all the wavenumbers begin
to decrease until about t = 500. During this phase, the

FIG. 6. Time series of main model energies and the instan-
taneous vorticity for the case of 1.4–150. Solid blue and red
surfaces are iso-surfaces of positive and negative stream-
wise vorticity ωx and translucent surfaces are iso-surfaces
of ωz . (a) Evolution of wavenumber 1 and 2 is shown in bold
and colored lines. (b) Vortex structure at t = 100. (c) Vortex
structure at t = 700. (d) Vortex structure at t = 1100.
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three-dimensional effect captured by DNS is continuously weak-
ened. In fact, the flow state is still in the laminar state and three-
dimensional instability has not yet occurred at low Reynolds num-
bers. Similar to the majority of previous studies,15,38,39 the three-
dimensional instability of a single square cylinder fails to appear
before Re = 165, so this trend is reasonable. What is abnormal is
that all wavenumber modes obtain energy again after t = 500, and
several wavenumbers with higher initial values of energy quickly
take the lead. At about t = 700, the modal energy with wavenum-
ber 2 is saturated, and then it can be seen that the two modes of
wavenumber 1 and wavenumber 2 are constantly competing with
each other. The visualized three-dimensional vortex structures at
two specific moments are shown in Figs. 6(c) and 6(d). The span-
wise vortex tubes show distortion at the time instant t = 700. The
deformation of the vortex street is caused by the appearance of dis-
tortion on the spanwise vortices, which illustrates the generation of
three-dimensional instability. At the same time, the streamwise vor-
tex pairs with opposite signs are produced in an alternating form
along the spanwise direction. Initially generating three-dimensional
instability, the streamwise vortex pairs present an ordered parallel
symmetry along the vortex tubes. As shown in Fig. 6(c), the spanwise
wavelength of the vortex pairs is approximately 4D, corresponding
to wavenumber 2. Then, the vortex structure in the spanwise direc-
tion is further deformed, performing irregular characteristics in the
flow field. At t = 1100 [Fig. 6(d)], the spanwise wavelength in the
wake vortex structure is still 4D, but it appears as one periodic vortex

pair in the near-wake region, which is in the modal mutual inter-
ference stage [Fig. 6(a)]. Up to t = 2500, streamwise vortices return
to the regular parallel vortex pairs of two cycles, which is almost
identical to that in Fig. 6(c). In general, the spanwise wavelength
is dominant in 4D in the evolution of the wake vortices with L/D
= 1.4, which is similar to the form of mode A in a single square
cylinder. The characteristics of the evolution of three-dimensional
flow vortex structure over time are illustrated quantitatively by the
energies.

From the vorticity contours, the flow structure appears as a sin-
gle bluff body wake pattern. What is outstanding is that the impact
of the gap flow is clearly shown in Fig. 7(a). The time history curve
of force components shows a legible pulsation as well as the appar-
ent intermittent switching of the flow pattern in Figs. 7(b) and 7(c).
Carini et al.40 have found the origin of the intermittent switching of
the flow pattern at low Reynolds number. On the basis of the energy
curves, the dominant wavenumber 2 mode is in line with the high
frequency, and the interference of the low frequency correspond-
ing to other modes weakens the ordered flow vortex structure of
the wavenumber 2 mode. Modal competition has been in a cyclical
progression.

Sau et al.41 have investigated that the vortex structure grad-
ually loses stability and induced three-dimensionality as the spac-
ing ratio decreases, and corelines of the shedding vortex appear in
a wave-like shape. It is noted that in the range of 0.2–1 spacing
ratio the gap flow is randomly flipped between the two cylinders

FIG. 7. The case of 1.4–150. (a) The middle section of
instantaneous spanwise vorticity contours. (b) Time history
curves of drag coefficient. (c) Time history curves of lift
coefficient.
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FIG. 8. For the case of 3.5–150, solid blue and red surfaces are iso-surfaces of
positive and negative streamwise vorticity ωx and translucent surfaces are iso-
surfaces of ωz . The vortex structure at t = 1500.

and alternately deflected towards one cylinder or the other, and the
spanwise extending vortex tube begins to generate a wave character-
istic. The above energy phenomenon and the corresponding three-
dimensional vortex structure transformation can be understood as
the effect of the gap flow on the generation of the three-dimensional
wake of the structure with a small spacing at a low Reynolds
number.

2. L/D = 3.5
As shown in Fig. 5(a), the energy curves show that wavenum-

ber 5 reaches saturation and occupies the global dominant mode,
meanwhile its harmonics array tends to plateau with time, never-
theless the energy values of the other group arrays are declining.

Since the energy value of wavenumber 10 is low, it is not reflected in
the three-dimensional flow vortex structure. The extremely ordered
spanwise vortices of waviness and rib-shaped streamwise vortices
are shown in Fig. 8. There are five cycles of vortex pairs along the
spanwise direction, corresponding to the wavelength of about 1.6D,
which perfectly corresponds to the dominant wavenumber in energy
curves. Given that a symmetric arrangement of multiple bluff bodies
of a certain Reynolds number and a certain range of spacing ratios
may be critical to the stable development of the wake vortex struc-
ture, these ordered vortex structures in a certain spacing may serve
as key points in the future study of the flow transition process. In
addition, the spanwise wavelength exhibits the features of mode C
type for 3.5–150.

In the case of 3.5–150, the flow regime appears as a reattach-
ment anti-phase wake pattern from the vorticity contours. It is worth
noting that during the process of vortex shedding, the reason of
vortex streets on the upper and lower sides spreading outwards is
not explicit. After the flow field is fully developed, the amplitude
and frequencies in time history curves are kept constant over time,
reflecting that the flow field has remained stable.

3. L/D = 4
At a spacing ratio of 4, the wake field is a phase-difference pat-

tern. It can be seen from Fig. 10 that the inner vortex of the upper
and lower vortex streets starts merging and a new wake flow pat-
tern remains constant after t = 1600. In general, the correspond-
ing energy curves without the three-dimensional effect will decay
faster. What is unusual is that the energies do not decay thoroughly
for the case of 4–150, and after turning point around t = 1600

FIG. 9. (a) Evolution of energy curves
over time for the case of 4–150. The
main wavenumbers 2 and 4 are shown
by orange and red lines. (b) The front
view of vortex structure at t = 6000. (c)
The top view of vortex structure at t
= 6000.

FIG. 10. Evolution of wake flow topology
over time with a spacing ratio of 4 at Re
= 150. (a) t = 1000. (b) t = 1600. (c) t
= 3000. (d) t = 6000.
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FIG. 11. The case of 4–150. (a) Time his-
tory curves of drag coefficient. (b) Time
history curves of lift coefficient.

the curves begin to rise. As can be seen from Fig. 9, the ascend-
ing process keeps very slow, and the emergence and growth of
three-dimensional effects are also slow. The evolution of the ener-
gies continues to be tracked. After t = 5500, all harmonics reach
plateau and wavenumber 2 dominates. The fusion process of the
inner vortex in the far-wake is shown in Figs. 10(a)–10(c), and it
is seen in Fig. 10(d) that the wake eventually stabilizes. From time
history curves (Fig. 11), the trend of wake transition can also be
reflected.

Due to the insufficient length of the downstream flow field, a
completely stable flow regime in far-wake was not demonstrated.
This merging mechanism of the wake vortex illustrates why three-
dimensional instability occurs at high spacing and low Reynolds
numbers.

4. Two-dimensional laminar flow
There is no three-dimensional effect in the wake flow of the four

square cylinders with 2.5–150 and 5–150. The energy curves rapidly
decline to the bottom. Despite this, the two-dimensional wake flow
pattern of each spacing ratio has its own features. The details and
features of the wake flow will be explained later.

Unlike the spacing of 1.4 and 3.5, no three-dimensional insta-
bility occurs in the case of 2.5–150. The flow patterns in the near-
wake region with spacing ratios from 3.5 to 5 are all in the form
of an anti-phase synchronization at Re = 150, in which the three-
dimensional intensity generated by L/D = 3.5 continuously enhances
with time. The flow regime of L/D = 2.5 is monitored over time
in Fig. 12, and the initial phase also performs an anti-phase syn-
chronous pattern. The wake transition starts around t = 347, and the
saltation of the time history curve at this time in Figs. 13(a) and 13(b)

FIG. 12. Evolution of wake flow topology over time with a spacing ratio of 2.5 at Re
= 150. (a) t = 200. (b) t = 347. (c) t = 500.
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FIG. 13. The case of 2.5–150. (a) Time history curves of
drag coefficient. (b) Time history curves of lift coefficient.

indicates the transform. The flow regime switches from anti-phase to
in-phase, which does not revert in the later development. The reason
why such a change process does not produce a three-dimensional
effect at this spacing may be that itself avoids the three-dimensional
instability of the spanwise direction by the evolution of mechanism
of the flow topology. Increasing in spacing, the flow field cannot be
stabilized by changing the flow topology, so the three-dimensional
effect begins and further develops.

In addition, for 5–150, the wake flow expresses the upstream
vortex shedding anti-phase pattern. The vortex streets on the upper
and lower sides themselves change the vortex shedding frequency at
the far-wake. This variation does not cause new three-dimensional
effects.

C. Unstable modal evolution analysis at Re = 200
The results of the existing studies indicate that the wake vortex

structure of a square cylinder at Re = 200 has completely generated
three-dimensional instability and is in the process of mode transi-
tion. There is little research on the evolution of vortices of multiple
bluff bodies and the following describes the situation when Re = 200.

1. L/D = 1.4
At Re = 200, the generation of three-dimensional instability is

no longer caused mainly by the influence of the gap flow. As shown
in Fig. 14(a), different from the previous cases, there is no stage in
which the trends of the model energy first drops, and then rises.

FIG. 14. For the case of 1.4–200. (a) Time series of main model energies, evolution of wavenumber 1 ∼ 4 shown in bold and colored lines. [(b) and (c)] The three-dimensional
instantaneous vortex structures at t = 100 and t = 400, respectively. [(d) and (e)] The middle section of instantaneous spanwise vorticity contours at t = 100 and t = 400,
respectively.
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At small spacing ratios, the two-dimensional flow state is close to
the case of a single square cylinder, but the onset and evolution of
three-dimensional instability is under the influence of many factors,
where the gap flow plays a pivotal role. The high-intensity gap flow
enhances the nonlinear effect, which is manifested by the excita-
tion of the wake field, and causes the small-scale vortex to merge
and develop into a larger-scale vortex. In the case of a single square
cylinder with Re = 200, the three-dimensional instability is in the
transition interval, and it mainly appears when mode B is in the
evolution of time.

A large amount of wavenumber modes absorb more energy, so
it is difficult to quantify its dominant mode as shown in Fig. 14(a). In
the early stage of wake evolution, the three-dimensional instability
has emerged before vortex-shedding [Figs. 14(b) and 14(d)], which
is the same as in the case of 1.4–150. However, when the spacing is
greater than 1.4, the vortex has shed before the three-dimensional
instability occurs. By observing the three-dimensional flow vortex
structure after vortex shedding [Fig. 14(b)], the wake flow presents
a single vortex street form. In this study, it can be observed that
there are multiple cycles of vortex pairs coexisting, corresponding
to the spanwise wavelength in the range from 2D to 4D. It can be
seen as a single bluff body structure on account of sufficiently small
spacing ratio, so the flow characteristics of the wake vortex can be
compared with a single square cylinder. Jiang et al.38 investigated
the three-dimensional wake transition of a single square cylinder.
The transition from mode A∗ to mode B is in the interval of Re
= 185–210, so the coexistence and interaction of mode A with dis-
location and mode B can evolve in this range. Meanwhile, there
are multiple vortices of different scales dislocated, which is similar
to the phenomenon of the single square cylinder reported by Jiang
et al.38

Comparing the vorticity contours of the two cases of 1.4–150
and 1.4–200 demonstrated in Figs. 7(a) and 14(e), both of which
appear as a single bluff-body wake pattern. For the case of 1.4–200,
increased strength of the gap flow directly impacts the mature vor-
tices and then disturbs the stability of the shedding vortex, making
the features of three-dimensional unstable mode transition not the
same as the stage of mode A to mode B.

2. L/D = 2.5
When the spacing ratio is 2.5 (Fig. 15), the entire develop-

ment process of this stage keeps exceedingly regular. The domi-
nant spanwise wavelength of streamwise vortices appears to be 1.6D
approximately, corresponding to the five cycles of rib-shaped vortex
pairs. It may be seriously noted that both two cases (3.5–150 and
2.5–200) have a completely similar three-dimensional instability
mode according to whether three-dimensional numerical simulation
or energy curves. The unstable mode of wavenumber 5 has a typical
significance and takes the lead in the four square cylinder struc-
ture under uniform flow [Fig. 15(a)]. The phenomenon that this
type of wake vortex is different from that of single bluff body mani-
fests that multiple bluff body structures have unique hydrodynamic
characteristics and mechanism.

Both cases of 3.5–150 and 2.5–200 show a spanwise wavelength
of 1.6D. This is similar to the third fundamental mode found in
recent studies,9–12,42 referred to as mode C, which is characterized
by the double-period and intermediate spanwise wavelength. It can

FIG. 15. For the case of 2.5–200. (a) Time series of main model energies, evolution
of wavenumber 5 and 10 shown in bold and colored lines. (b) Iso-surfaces of ωx

shown by blue and red surfaces. (c) Iso-surfaces of ωz shown by light green and
dark green, respectively.

be determined from Fig. 16, which indicates the features of double-
period in streamwise vortices, that both three-dimensional instabil-
ities are mode C. No matter from the energy curves or the vortex
structure, there is no evidence of other instability mode and mode
C keeps absolutely dominant. At the same time, the flow regime all
appears as a reattachment anti-phase flow pattern shown in spanwise
vortices.

3. L/D = 3.5
The spacing ratio of 3.5 becomes a key node. At this moment,

the flow state enters a chaotic state, which shows that the disturbance
between the modes becomes very intense. The three-dimensional
instability under this stage is undergoing a new transition process.
The initial performance is dominated by wavenumber 2 shown in
Fig. 17(a). The spanwise wavelength of streamwise vortices presents
approximately 4D. After that, the remaining wavenumber modes
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FIG. 16. The features of period-doubling mode shown in instantaneous streamwise
vorticity contours. Spanwise vorticity is overlaid as solid lines. (a) 3.5–150. (b)
2.5–200.

rise rapidly and compete fiercely with wavenumber 2, and the energy
oscillations reflect the fierceness of nonlinear effects. Noteworthy it
may be that the uniformity and regularity of the wake flow field begin
to degenerate, and more broken and dispersed vortices surround the
dominant vortex pairs. Two time points of t = 1500 and t = 2000
are selected and shown in Figs. 17(c) and 17(d). At the previous
time, modes of wavenumbers 2 and 3 are basically not dominant,
and the vortex structure shows incline and interlacing. Whereafter,
the mode of wavenumber 3 is slightly dominant, and the three-
period flow vortices in the vortex structure are relatively neat and
parallel to the flow direction. Throughout the evolution process, the
three-dimensional flow vortices are in chaotic states.

In addition to wavenumbers 2 and 3 as the leading mode,
wavenumber 1 occupies a higher energy. In the example of multi-
modal competition in this article, it has appeared many times. For
this phenomenon, it does not mean that wavenumber 1 domi-
nates, because it cannot be reflected from the wake vortex structure.
Mainly, the energy curves have a good quantitative orientation for
the relatively regular single wavenumber mode. It is difficult to cap-
ture the multimodal chaotic state, so the flow field along the span is
recognized as one period.

FIG. 17. Time series of main model energies and the instantaneous vorticity for the case of 3.5–200. (a) Evolution of wavenumbers of 1, 2, and 3 shown by bold and colored
lines. Vortex structure at t = 300. (b) Partially enlarged view of (a) of the energy curves ranging from t = 1000 to t = 2500. (c) Vortex structure at t = 1500 on the left. (d) Vortex
structure at t = 2000 on the right.
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FIG. 18. The case of 3.5–200. (a) The
middle section of instantaneous span-
wise vorticity contours. (b) Time history
curves of drag coefficient.

The wake pattern looks very turbulent, as shown in Fig. 18(a).
The wake of the rear of upstream square cylinders put up the state of
the in-phase and at the critical point of vortex shedding. The reason
why the three-dimensional instability appears exceedingly intense
is that they are in the stage of multi-modal mutual interference. As
shown in Fig. 18(b), the amplitude and frequency oscillations of the
time history curve are severe in the first t = 1000, in which wavenum-
ber 2 dominates and the fluctuation of force of square cylinder 1
is obvious. After the stage of intense interactions of two modal,
the amplitude of the drag and lift curve is relatively stable, which
highlights that the modal mutual interference is the dominant state
under this condition. Since the vorticity contour is a section of three-
dimensional vortex, major broken vortex structures are prominent.
By observing the main vortex core, the downstream wake illustrates

a form of phase difference and the vortex shedding frequency is also
different.

4. L/D = 4
Passing the previous chaotic state, the flow state enters a new

stable regime again. After a period of development, the energies
reach saturation and become the dominant mode with wavenum-
ber 2, which lasts for about t = 900 as shown in Fig. 19. The energy
branches out two groups of wavenumbers during this time and the
other groups lose energy and begin to decline.

The development of the three-dimensional flow structure
launches out into transition at 900 time unit. The mode group where
the main wavenumber 2 and its corresponding harmonic are located

FIG. 19. Energy curves time series and
two instantaneous vorticities in different
stages for the case of 4–200. The dom-
inant wavenumbers 2 and 4 are shown
by bold and colored lines. The upper and
lower figures represent the vortex struc-
tures at t = 200 and t = 1300, respec-
tively.
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FIG. 20. The case of 4–200, t = 1300. (a) The features of period-doubling
mode shown in instantaneous streamwise vorticity contours. (b) The features of
instantaneous spanwise vorticity contours.

comes into bifurcation and the branches are divided into two new
groups. Wavenumber 2 is replaced by wavenumber 4 to turn into
the dominant mode, while wavenumber 2 as well as its harmonic
decay rapidly. A four-period spanwise vortex pair emerges a regular
modality, corresponding spanwise wavelength of 2D.

It can be seen from the comparison of two three-dimensional
flow structures that the initial spanwise wavelength of 4D is only a
transitional flow state, and the three-dimensional effect is first gen-
erated at the far-wake. To a great extent, the instability seems to be
due to the coactions of the downstream vortices. Thus, it takes the
lead in obtaining energy to generate three-dimensional instability.
Along with the vortex at the far-wake flows into a steady state, the
energies of the entire flow field are redistributed. In the rear of the
square cylinders, the intrinsic spanwise vortices are formed.

As shown in Fig. 20, the latter stage instability is also expressed
as mode C, but its spanwise wavelength corresponding to wavenum-
ber 4 dominated is slightly larger than the previous case. The studies
of wake transition in staggered cylinders by Carmo et al.12 have
shown that mode A and mode B first stemmed in the near-wake of
the upstream cylinder, while mode C originated in the near-wake of
the downstream cylinder. However, the vortex instability of mode
C is generated behind the upstream square cylinder at a spacing of

4. The reason for this phenomenon may be the result of a combi-
nation of large bluff body spacing and geometrical shape. A suffi-
ciently large spacing causes the upstream vortex shedding, and this
appearance is likely to the downstream mode C instability reacting
to the upstream rear vortex, which is synchronously developed into
mode C.

5. L/D = 5
When the spacing ratio increases to 5, the mutual influence

between the square cylinders is relatively weak and its characteris-
tics can be compared with a single square. The wake characteristics
of two side-by-side square cylinders at a high spacing ratio are closer
to the single square except for in-phase and anti-phase flow pat-
tern. Due to the special arrangement of the four square cylinders, the
shedding vortex generated from the upstream square cylinders will
flap on the downstream square cylinders, thereby changing the over-
all flow topology at the far-wake. Nevertheless, a sufficiently large
spacing ratio is capable of generating a complete period of shed-
ding vortex behind the upstream cylinders, which is not subject to
downstream interference. As shown in Fig. 21, the flow vortex pairs
generated after the upstream square cylinders show seven cycles cor-
responding to the spanwise wavelength of about 1.1D. Compared
with the single square cylinder, the three-dimensional instability
remains as resemble as mode B. However, the perturbation of span-
wise wavelength manifests in the far wake. Among them, the vortex
pairs behind the downstream square cylinders also appear in dif-
ferent scales. On account of the nonlinear effects, the interaction of
the vortices gives rise to the emergence of small-scale vortex into a
large-scale streamwise vortex and further starts oscillation.

By comparison, the values corresponding to each wavenumber
reaching saturation keep high, indicating that the final state of the
three-dimensional structure is affected by many different unstable
modes and suggesting that the transition is a chaotic flow.

Many studies have shown that a symmetric multi-bluff body
promotes the most stable pattern to be an anti-phase flow regime.
Comparing the two vorticity contours of the case of 4–200
[Fig. 20(b)] and 5–200 (Fig. 22), the flow topology of the wake field
in the near-wake is almost identical. However, the two vortex streets
develop independently for the case of 5–200, whose disturbance
starts at the far-wake shown in Fig. 22, but the impacts on the rear
of the upstream square cylinder and the near-wake are consistent
with the results of earlier investigations. The four square cylinders
at a high spacing ratio are close to a single square, which is in the
transition stage at Re = 200.

FIG. 21. Energy curves time series and
the instantaneous vorticity at t = 2000 for
the case of 5–200. Wavenumbers 1–7
are shown by bold and colored lines.
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FIG. 22. The features of instantaneous spanwise vorticity contours for 5–200 at t
= 2000.

IV. CONCLUSION
In this paper, the high-order spectral element method is

employed to analyze the development of three-dimensional instabil-
ity for the four square cylinders. Reynolds numbers of 150 and 200
are selected, and five spacing ratios are adopted, including 1.4, 2.5,
3.5, 4, and 5. The influence of L/D on force characteristics implies
that there are specific three-dimensional unstable mode transition
processes under four square cylinder conditions. These processes
are analyzed qualitatively through three-dimensional visualization
vortex structures and are quantified by energy curves. Then, the
wake patterns and time-history curves are used to further explain the
cause and mechanism of the process of three-dimensional unstable
mode transition.

A variety of modal transition processes has emerged by vary-
ing the Reynolds number and spacing ratio, which are the major
factors affecting the evolution of three-dimensional instability, as
well as the flow topology.

The fundamental instabilities of mode A and mode B have
appeared for the two end spacings of 1.4 and 5 in this study, which
is consistent with earlier correlational studies. However, between
the above, the diversity of the three-dimensional vortex structure
and the transition of flow topology take on their own character-
istics. It was found that at a low Reynolds number of Re = 150,
at which the wake of a single square cylinder is two-dimensional,
the three-dimensional transition phenomenon occurred in flow past
four square cylinders.

At low Reynolds number and low spacing, three-dimensional
effects appear due to the excitation of the gap flow, and mode A
dominates. In the case of 2.5–200 and 3.5–150, an ordered three-
dimensional instability mode C with the corresponding spanning
wavelength of 1.6D becomes the dominant mode. Meanwhile, for
the case of 4–200, the first three-dimensional unstable mode is
replaced by the ordered mode C after the end of the disturbance of
the far-wake flow in the early stage, and the corresponding span-
wise wavelength keeps 2D, slightly larger than the previous 1.6D.
The discrepancy of mode C at L/D = 4 is that the generated position
appears in the rear of upstream square instead of the downstream
square. For the case of 3.5–200, between 2.5 and 4, a chaotic regime
with severe disturbances appears, indicating that this spacing is in
the critical position of multi-modal competition. In this study, the
three-dimensional instability mode C was found for the first time in
symmetrically arranged multi-column structure. In previous studies,
mode C was usually only generated in the wake of the asymmetrical
structure.

The flow topology structures can be divided into several main
wake patterns via the plane vorticity contours, including a single
bluff body pattern, reattachment anti-phase pattern, reattachment
in-phase pattern, phase difference pattern, and vortex shedding anti-
phase pattern, which reflect the relevant characteristics of the evolu-
tion of three-dimensional instability. The flow patterns correspond-
ing to mode C in this study are all in anti-phase synchronization.
The evolution of the vorticity contours with Re = 150 further reveals
the causes of the three-dimensional effect at low Reynolds numbers.
For the case of 2.5–150, the generation of three-dimensional insta-
bility is avoided by changing its own flow topology. For the case of
4–150, on account of the mechanism of the inner vortex fusion at the
far-wake with a long period of development, the three-dimensional
effects appear at a low Reynolds number and high spacing ratio for
the first time.
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NOMENCLATURE

ωx the streamwise vorticity
ωz the spanwise vorticity
CD the mean drag coefficient
CD the drag coefficient
C′D the root-mean-square drag coefficient
CL the lift coefficient
C′L the root-mean-square lift coefficient
D the side length of the square
L the center-to-center spacing
L/D the spacing ratio
Re the Reynolds number
St the Strouhal number

REFERENCES
1C. H. K. Williamson, “Vortex dynamics in the cylinder wake,” Annu. Rev. Fluid
Mech. 28(1), 477–539 (1996).
2C. H. K. Williamson, “Three-dimensional wake transition,” J. Fluid Mech. 328,
345–407 (1996).
3D. Barkley and R. D. Henderson, “Three-dimensional floquet stability analysis of
the wake of a circular cylinder,” J. Fluid Mech. 322, 215–241 (1996).

AIP Advances 10, 015142 (2020); doi: 10.1063/1.5129744 10, 015142-15

© Author(s) 2020

https://scitation.org/journal/adv
https://doi.org/10.1146/annurev.fl.28.010196.002401
https://doi.org/10.1146/annurev.fl.28.010196.002401
https://doi.org/10.1017/s0022112096008750
https://doi.org/10.1017/s0022112096002777


AIP Advances ARTICLE scitation.org/journal/adv

4R. D. Henderson, “Nonlinear dynamics and pattern formation in turbulent wake
transition,” J. Fluid Mech. 352, 65–112 (1997).
5C. H. K. Williamson, “The existence of two stages in the transition to three-
dimensionality of a cylinder wake,” Phys. Fluids 31(11), 3165–3168 (1988).
6J. Robichaux, S. Balachandar, and S. P. Vanka, “Three-dimensional floquet
instability of the wake of square cylinder,” Phys. Fluids 11(3), 560–578 (1999).
7H. M. Blackburn and J. M. Lopez, “On three-dimensional quasiperiodic floquet
instabilities of two-dimensional bluff body wakes,” Phys. Fluids 15(8), L57–L60
(2003).
8H.-Q. Zhang, U. Fey, B. R. Noack, M. König, and H. Eckelmann, “On the
transition of the cylinder wake,” Phys. Fluids 7(4), 779–794 (1995).
9G. J. Sheard, M. C. Thompson, and K. Hourigan, “From spheres to circular cylin-
ders: The stability and flow structures of bluff ring wakes,” J. Fluid Mech. 492,
147–180 (2003).
10G. J. Sheard, M. J. Fitzgerald, and K. Ryan, “Cylinders with square cross-section:
Wake instabilities with incidence angle variation,” J. Fluid Mech. 630, 43–69
(2009).
11G. J. Sheard, M. C. Thompson, and K. Hourigan, “Subharmonic mechanism of
the mode c instability,” Phys. Fluids 17(11), 111702 (2005).
12B. S. Carmo, S. J. Sherwin, P. W. Bearman, and R. H. J. Willden, “Wake transi-
tion in the flow around two circular cylinders in staggered arrangements,” J. Fluid
Mech. 597, 1–29 (2008).
13B. S. Carmo, J. R. Meneghini, and S. J. Sherwin, “Secondary instabilities in
the flow around two circular cylinders in tandem,” J. Fluid Mech. 644, 395–431
(2010).
14C.-B. Choi and K.-S. Yang, “Three-dimensional instability in the flow past two
side-by-side square cylinders,” Phys. Fluids 25(7), 074107 (2013).
15C.-B. Choi, Y.-J. Jang, and K.-S. Yang, “Secondary instability in the near-wake
past two tandem square cylinders,” Phys. Fluids 24(2), 024102 (2012).
16K. Lam, J. Y. Li, K. T. Chan, and R. M. C. So, “Flow pattern and velocity field
distribution of cross-flow around four cylinders in a square configuration at a low
Reynolds number,” J. Fluids Struct. 17(5), 665–679 (2003).
17K. Lam, J. Y. Li, and R. M. C. So, “Force coefficients and Strouhal numbers of
four cylinders in cross flow,” J. Fluids Struct. 18(3-4), 305–324 (2003).
18K. Lama and L. Zou, “Experimental and numerical study for the cross-flow
around four cylinders in an in-line square configuration,” J. Mech. Sci. Technol.
21(9), 1338 (2007).
19K. Lam, W. Q. Gong, and R. M. C. So, “Numerical simulation of cross-flow
around four cylinders in an in-line square configuration,” J. Fluids Struct. 24(1),
34–57 (2008).
20K. Lam and L. Zou, “Three-dimensional numerical simulations of cross-flow
around four cylinders in an in-line square configuration,” J. Fluids Struct. 26(3),
482–502 (2010).
21F. Tong, L. Cheng, M. Zhao, T. Zhou, and X.-b. Chen, “The vortex shedding
around four circular cylinders in an in-line square configuration,” Phys. Fluids
26(2), 024112 (2014).
22Z. Han, D. Zhou, X. Gui, and J. Tu, “Numerical study of flow past four square-
arranged cylinders using spectral element method,” Comput. Fluids 84, 100–112
(2013).
23G. Karniadakis and S. Sherwin, Spectral/hp Element Methods for Computational
Fluid Dynamics (Oxford University Press, 2013).

24C. D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo,
D. De Grazia, S. Yakovlev, J.-E. Lombard, D. Ekelschot et al., “Nektar++: An open-
source spectral/hp element framework,” Comput. Phys. Commun. 192, 205–219
(2015).
25H. Xu, C. D. Cantwell, C. Monteserin, C. Eskilsson, A. P. Engsig-Karup, and
S. J. Sherwin, “Spectral/hp element methods: Recent developments, applications,
and perspectives,” J. Hydrodyn. 30(1), 1–22 (2018).
26G. E. Karniadakis, M. Israeli, and S. A. Orszag, “High-order splitting methods
for the incompressible Navier-Stokes equations,” J. Comput. Phys. 97(2), 414–443
(1991).
27A. Miliou, S. J. Sherwin, and J. M. R. Graham, “Wake topology of curved
cylinders at low Reynolds numbers,” Flow, Turbul. Combust. 71(1-4), 147–160
(2003).
28H. Jiang, L. Cheng, F. Tong, D. Scott, and H. An, “Stable state of mode a for flow
past a circular cylinder,” Phys. Fluids 28(10), 104103 (2016).
29G. Rocco and S. J. Sherwin, “The role of spanwise forcing on vortex shedding
suppression in a flow past a cylinder,” in Instability and Control of Massively
Separated Flows (Springer, 2015), pp. 105–110.
30F. Tong, L. Cheng, C. Xiong, S. Draper, H. An, and X. Lou, “Flow regimes for
a square cross-section cylinder in oscillatory flow,” J. Fluid Mech. 813, 85–109
(2017).
31R. Wang, Y. Bao, D. Zhou, H. Zhu, H. Ping, Z. Han, D. Serson, and H. Xu,
“Flow instabilities in the wake of a circular cylinder with parallel dual splitter plates
attached,” J. Fluid Mech. 874, 299–338 (2019).
32T. Yan, R. Wang, Y. Bao, D. Zhou, H. B. Zhu, H. Ping, Z. L. Han, and B. F. Ng,
“Modification of turbulent wake characteristics by two small control cylinders at
a subcritical Reynolds number,” Phys. Fluids 30(10), 105106 (2018).
33G. E. Karniadakis, “Spectral element-Fourier methods for incompressible tur-
bulent flows,” Comput. Methods Appl. Mech. Eng. 80(1-3), 367–380 (1990).
34C. J. Doolan, “Flat-plate interaction with the near wake of a square cylinder,”
AIAA J. 47(2), 475–479 (2009).
35A. Sohankar, C. Norberg, and L. Davidson, “Simulation of three-dimensional
flow around a square cylinder at moderate Reynolds numbers,” Phys. Fluids 11(2),
288–306 (1999).
36D.-H. Yoon, K.-S. Yang, and C.-B. Choi, “Three-dimensional wake structures
and aerodynamic coefficients for flow past an inclined square cylinder,” J. Wind
Eng. Ind. Aerodyn. 101, 34–42 (2012).
37G. Agbaglah and C. Mavriplis, “Computational analysis of physical mechanisms
at the onset of three-dimensionality in the wake of a square cylinder,” J. Fluid
Mech. 833, 631–647 (2017).
38H. Jiang, L. Cheng, and H. An, “Three-dimensional wake transition of a square
cylinder,” J. Fluid Mech. 842, 102–127 (2018).
39D. Park and K.-S. Yang, “Flow instabilities in the wake of a rounded square
cylinder,” J. Fluid Mech. 793, 915–932 (2016).
40M. Carini, F. Giannetti, and F. Auteri, “On the origin of the flip–flop instability
of two side-by-side cylinder wakes,” J. Fluid Mech. 742, 552–576 (2014).
41A. Sau, T.-W. Hsu, and S.-H. Ou, “Three-dimensional evolution of vortical
structures and associated flow bifurcations in the wake of two side-by-side square
cylinders,” Phys. Fluids 19(8), 084105 (2007).
42G. J. Sheard, M. C. Thompson, K. Hourigan, and T. Leweke, “The evolution of
a subharmonic mode in a vortex street,” J. Fluid Mech. 534, 23–38 (2005).

AIP Advances 10, 015142 (2020); doi: 10.1063/1.5129744 10, 015142-16

© Author(s) 2020

https://scitation.org/journal/adv
https://doi.org/10.1017/s0022112097007465
https://doi.org/10.1063/1.866925
https://doi.org/10.1063/1.869930
https://doi.org/10.1063/1.1591771
https://doi.org/10.1063/1.868601
https://doi.org/10.1017/s0022112003005512
https://doi.org/10.1017/s0022112009006879
https://doi.org/10.1063/1.2139682
https://doi.org/10.1017/s0022112007009639
https://doi.org/10.1017/s0022112007009639
https://doi.org/10.1017/s0022112009992473
https://doi.org/10.1063/1.4813628
https://doi.org/10.1063/1.3682373
https://doi.org/10.1016/s0889-9746(03)00005-7
https://doi.org/10.1016/j.jfluidstructs.2003.07.008
https://doi.org/10.1007/bf03177418
https://doi.org/10.1016/j.jfluidstructs.2007.06.003
https://doi.org/10.1016/j.jfluidstructs.2010.01.001
https://doi.org/10.1063/1.4866593
https://doi.org/10.1016/j.compfluid.2013.05.008
https://doi.org/10.1016/j.cpc.2015.02.008
https://doi.org/10.1007/s42241-018-0001-1
https://doi.org/10.1016/0021-9991(91)90007-8
https://doi.org/10.1023/b:appl.0000014920.94050.a2
https://doi.org/10.1063/1.4964379
https://doi.org/10.1017/jfm.2016.829
https://doi.org/10.1017/jfm.2019.439
https://doi.org/10.1063/1.5046447
https://doi.org/10.1016/0045-7825(90)90041-j
https://doi.org/10.2514/1.40503
https://doi.org/10.1063/1.869879
https://doi.org/10.1016/j.jweia.2011.10.012
https://doi.org/10.1016/j.jweia.2011.10.012
https://doi.org/10.1017/jfm.2017.713
https://doi.org/10.1017/jfm.2017.713
https://doi.org/10.1017/jfm.2018.104
https://doi.org/10.1017/jfm.2016.156
https://doi.org/10.1017/jfm.2014.9
https://doi.org/10.1063/1.2757712
https://doi.org/10.1017/s0022112005004313

